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Abstract. The composition rules of period-tripling and period-doubling in symbolic dynamics

of four letters are proposed. The methods to generate various singly and doubly superstable
kneading sequences from triply superstable kneading sequences are given. These composition
rules and methods will present all the essential elements in the three-dimensional parameter
space, including thgoint’, ‘bones’ ‘membrane surfacesdn the ‘skeleton’and many fractal
objects constructed by period-doubling and period-tripling bifurcations. It is shown that the
generalization from unimodal and bimodal to trimodal maps is not trivial. And the promptly
exponential growth in the kinds of star transformations is even seen when the number of critical
points (or parameters) of the map increases.

1. Introduction

Many achievements have been made in the study of the symbolic dynamics of one-
dimensional unimodal and bimodal maps [1-7]. In the studies of multimodal maps, symbolic
dynamics of trimodal maps has received increasing attention [8—10].

In classical and quantum physics there are a number of interesting systems; their
dynamical behaviour can approximately be modelled by trimodal and even multimodal
maps with different parameters. Suppose that the physical system has a rather more
complex potential than a single well, such as a cubic, quartic or other higher power
potential (multiwell potential). They may have the property of a multimodal map.
However, we cannot see immediately the connection between the real physical system
and their corresponding iterative dynamics. Generally, there are two approaches to
study the dynamical behaviour of real physical systems. One is the approximation of
the first-order difference equation [11] to physical systems. For classical mechanics in
the one-dimensional case, we have easily the first-order nonlinear autonomous equation
x = ﬂ:[%(E — Va)Y? = G(x,c); E,V(x) are initial energy and potential energy
depending on the coordinateof the particle¢ are control parameters. Under the difference
approximation their dynamics can be viewed as a mapping fqrmx,, + G (x,, ¢). When
G(x, c) = apx™ + box® + cox? + dox + ep, these are standard trimodal maps. They may be
the physical models of polynomial potentials and other quartic effective potential models.
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For the optical system, for instance, the periodic and chaotic behaviours come from the
instability of the hybrid bistable optical cavity with liquid crystal medium. This leads to
the mathematical models of symbolic dynamics of a general trimodal map [12-14], or in
the simplified case, the sine-square map is a special one with two equally high peaks [8, 9]
in the sense of first-order difference. Second is the Painsaction method of second-
order differential equations. Using this method most physical systems can be modelled
as iterative dynamics by the first return map in the Poiacaction [15]. Unfortunately,
almost all iterative dynamics in the Poinéasection observed in the numerical study are
the multimodal maps with one or more discontinuous points. A typical example is the well
known Lorenz equations [15, 16], their iterative dynamics can be modelled by the map of
four letters with one discontinuous point [16]. Many physical systems are discontinuous
maps such as strongly dissipative systems [17-19]. Although we study the continuous map
in this paper, the discontinuous map can be regarded as the breaking or pruning of the
continuous map at a region [17-19]. Symbolic dynamics of three-parameter families of
general trimodal maps may relate to, for instance, the general circle maps with two non-
monotonic intervals [20]. The clearer the continuous map we understand, the deeper the
discontinuous map we study. It is our aim to approach real physical systems in this way.

The key rule in symbolic dynamics is the star product. Early on, Dereidal [2]
presented a complete expression of the star product for unimodal maps of two letters.
Over the past decade some important results have been obtained for bimodal maps of
three letters [21-30]. For the one-dimensional symbolic dynamics of continuous maps the
next problem to be tackled is the star product of trimodal maps of four letters. Because
their dynamical behaviours are generally rather more complex than unimodal and bimodal
maps and will display the generic character of continuous maps that unimodal and bimodal
ones do not have. For instance, the character of a cyclic group caused by three or more
critical points of the map. To date for trimodal maps we have only preliminary results
[8-10]. However, seeking their complete start products will be a cumbersome and difficult
task mathematically, because the essential rules of the composition operations of period-
doubling and period-tripling have not yet been set up. Our work will be parallel to the
work of MacKay and Tresser on the bimodal case [21]. It is appropriate to seekstame
transformationswe describe them in this way as they do not fazampletestar products.
Obtaining these star transformations is only the first step to explore the complete star
products. After having understood these preliminary rules we will then be able to obtain
some clues to the construction of the complete star products, as in the case of bimodal
maps [21,22]. Ringland and Tresser [26,27] generated a genealogy of finite kneading
sequences by using the hierarchical transformationsfeeed,y-seeds ang -seed. They
present all monotone equivalence classes of the kneading sequence. In this paper we also
generate a genealogy of the kneading sequences with three critical points which form the
variety of star transformations by cyclic rules of parity. We present not only the monotone
equivalence classes, but also the equal entropy classes which are renormalizable. As the
star transformations are not yet complete star products, the monotone equivalence and the
equal entropy classes here are only a part of that to be found in the future.

It is revealed that the composition rules of the symbolic sequences in trimodal maps
are not trivial generalizations from those of star products in unimodal and bimodal maps.
This non-triviality stems from the following. (i) The power sequenté&’ of star products
(or transformations) of a primitive wordV is the formal expression of renormalization.
One realizes that there is only one kind of star product (i.e. the Derrida—Gervois—Pemeau
product [2]) for the symbolic dynamics of two letters in unimodal maps and two kinds of
dual star products for the symbolic dynamics of three letters in bimodal maps [21, 29, 30].
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It is found that there are 8 3 types of rules for period-tripling for triply superstable words

in trimodal maps. It is surprising that the number of star transformations, or probably star
products, increases exponentially. We conjecture that the number of star transformations is
related to the number of cyclic ways which are composed of periodic orbits of critical points.
Thus the varieties of star transformations increase the complexity in the renormalization.
(ii) A non-trivial generalization in the symbolic dynamics of four letters is the composition
operations of period-doubling. One knows that for symbolic dynamics of two or three
letters, the rules of period-doubling of a woWd are just thedirect star products of period-

2 superstable or doubly superstable words sucWasRC and WxDC or WxC D [21, 30].
However, for symbolic dynamics of four letters, there are no direct star products for period-
doubling. We need to modify the distributive law of multiplications in the star products,
or exactly, period-doubling will be realized by new kinds of star transformations. (iii)
The increase of the number of star transformations of period-doubling leads to a variety of
routes to chaos. An important phenomenon will occur in the Feigenbaum scenario, namely,
new Feigenbaum period-doubling bifurcations will possess topological universality but not
metric universality (namely, the universal scaling factors and convergent rates disappear)
[29].

Summarizing the above, the symbolic dynamics of four letters has many non-trivial
features. These non-trivial features would come from the complex permutation of the
cyclic group of three critical points, which are not present for the two critical points case.
In order to reflect the complexity of the symbolic dynamics of trimodal maps, we introduce
some new quantities: the two cyclic permutation operadgrg of two cyclic components
and the directionsS¢ p g Of parity of the three critical points. The two cyclic ways are
anticlockwise and clockwise, and two cyclic components are the three sequ&nceg and
critical pointsE, D, C. The two quantities make the star transformations form a harmonic
formalism under cyclic permutation. This expresses the generic characters of the continuous
map with multicritical points. It is believable that they also provide a simple prototype to
probe the complexity.

This paper is organized as follows. In section 2 the kneading space, word-lifting
technique and admissibility conditions of trimodal quartic maps are introduced. In section 3
the star transformations of period-tripling for an arbitrary triply superstable kneading
(TSSK) sequence are presented and new mathematical quantities are introduced. The star
transformations of period-doubling of TSSK sequences and the rules of period-doubling
cascade of arbitrary doubly superstable kneading (DSSK) sequences are discussed in
section 4. Finally in section 5 the method to generate singly superstable kneading (SSSK)
sequences from TSSK sequences is given by the star transformations.

2. Preliminaries of symbolic dynamics of trimodal map

2.1. Kneading space

Let the horizontal coordinates of three critical poiGtsD and E bea, b andc respectively.
The general quartic map can be written as

y:f(x):—k<}x4—a+b+c 3+ab+ac+bcx2

4 3 2
According to the successive signs of the slopg 6f) on its four intervals of monotonicity,
the quartic map can be divided into two typgs: — +—) for A > 0, and(— + —+) for
A < 0. In this paper we only consider tife- — +—) type, the discussion of the- + —+)
type is similar.

— abcx) + 4. (2.1)
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Figure 1. Schematic graphs of maps corresponding to boundary lines and boundary planes in
three-dimensional kneading space. Points Az, Az and O correspond to graphs of maps
(a)—(d), respectively. The coordinate axs, Kr and K, correspond to graphs of maps (e)—

(9), respectively. The kneading planegA®0O, A2A30 and AA10 corresponding to graphs of
maps (h)—(j), respectively.

For the(+—+—) quartic map, the conditions of the interval map shoulgbel) = —1,
f(+1) = —1. The four successive subintervals of monotonicity of the interval, {-1]
are denoted ad., M, N, and R by turns from left to right with the natural order
L <C<M<D <N < E < R where< is the MSS order [1] or lexicographical
order,L and N are monotone increasing, aidl and R monotone decreasing.

The three-dimensional kneading space of words in the symbolic dynamics of four letters
is a direct extension of the two-dimensional kneading plane in the symbolic dynamics of
three letters [21]. The kneading sequences starting from the three critical points denoted by
K¢, Kp and K, respectively. Let three coordinate axes corresponffdp K, and K,
then a three-dimensional space of kneading sequence is formed. The arrows in three axes
indicate the directions of increasing in the order of words. The upper and lower boundaries
of K¢, Kp andKg are RL*® and L*°, respectively. The schematic graphs of various maps
in the kneading space are given in figure 1.

In order to express the bifurcation structure of three-parameter families of trimodal
maps, we need to describe kneading sequences in the three-dimensional space. An arbitrary
singly superstable periodic orbit will span a curved surface calledntieenbrane surface’
in this space. If the two singly superstable periodic orbits are compatible [8], then their
two membrane surfaces will intersect a common curve called'libee’. If the three
singly superstable periodic orbits are compatible, then their three membrane surfaces will
intersect a common point called thpiht'. Of course, the two-dimensionalkeletonin
[21] is extended to the three-dimensional one. Figure 2 gives a sketch of the projections of
kneading sequences in the three kneading coordinate planes in which the period of singly
superstable periodic orbits is smaller than or equal to 4.
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Figure 2. A sketch of the kneading sequences of period smaller than or equal to 4 in the
kneading space for the quartic map. The black circles represent projections of the joints to the

three kneading coordinate planes.

2.2. Word-lifting technique of quartic maps

In this section the parameters of quartic maps are given by the word-lifting technique [6].

The four inverse functions of the map (2.1) are listed as follows:

1M P q
== (v2o+ [20—4( L +100+—= )]+
I 2( 0 \/0 (2 0 \/870)) Y

1M p q
= V20— [2tg— 4 Z +1tg+ —
Su 2( fo \/ 0 (2+O+«/8_lo))+v
1 o p q
=—Z\Vv2o— [200-4|S+00———=) ]| +V
Fu 2( 0 \/0 <2 0 8to)>
1 o P q
= -2V 20— 4 = 4+ 19— —
Ir 2( o+\/ 0 <2+0 8to))+v

2.2)
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wherery is the real positive root of the following cubic equation

P2 _ 2
Pape (2270 ) % —o (2.3)
4 " 8
and
a+b+c 4\"3
3 b b
p:—ku(évz—(a+b+c)v+$>

q= A2 = (@4 b+ )W+ (ab + ac + bc)v — abc)
rAf(vt (a+b+c)d  (ab+ ac+ be)v? §—v
y=—\|—- + —abcv | + .
u\ 4 3 2 7

Consider a TSSK sequen¢&€cKzKp) = (ZEXDYC), whereKc = ZE, Kg = XD
and Kp = YC are the superstable kneading sequences of the critical pGini3 and E,
respectively. Assume th&F = z122...2,E, XD = x1x2...x;D andYC = y1y,...y,C
(zi, xi, yi € {L, M, N, R}), then the systems of equations of parameters are

fl@)=fto 72 o fe)
f©=fltof oo fitb) (2.4)
fb) = )71 y;l 00 yml(a)'
Combining the conditions of the interval map, the relationship between the parameters read
a+c 41+ 6)
b=— A= ) 2.5
1+ 3ac 1+ 2(ab + ac + bc) (2:5)
Using the iterative method, the parameter valugs ands can be calculated. Table 1 lists
the values of the kneading parameters for TSSK sequences of period 3-5.

2.3. Admissibility conditions

Let B, By, By andBr be the sets of all subsequences which follbwM, N and R,
respectively. Assume tha¥ is an admissible word, then the admissibility conditions are
as follows [31]:

BL(W) < Kc <By(W) < K
Kp <By(W) < Kg Br(W) < K
WhenK¢, Kp andK g are superstable kneading sequences, the admissibility conditions turn
into pure inequalities. Obviously the kneading sequences themselves should also satisfy the
admissibility conditions
B (Kc, Kp, Kg) < K¢ < By (Kc, Kp, Kp) < K¢
p <By(Kc, Kp, Kg) < Kg Br(Kc, Kp, Kg) < Kg.

(2.6)

(2.7)

3. Varieties of star transformations of period-tripling of TSSK sequences

The method to produce TSSK sequences can be obtained by the star transformations of three
critical points. The periodic points of TSSK sequences of finite period belong to the cyclic
group which possesses two different types of cyclic wa§&;KKp) = (ZEXDYC) and
(KpKgKc) = (ZEYCXD). According to the admissibility conditions we find that TSSK
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Table 1. The values of kneading parameters of ttlez X DY C) TSSK sequences of period 3-5
for the quartic map.

Period Sequencea c 3

3 EDC —0.663307953129798 0.6999303135222190.624 636 883352953
4 EDLC —0.685205996 622996 0.726 195072 264 2930.936 339412433705
4 EMDC  —0.631287900353161 0.702979509 029 8160.482 208991 407 285
4 ENDC  —0.679940949756513 0.693291 406 9859490.674 449 665 297 450
4 ERDC  —0.696078325316184 0.6850493777981360.691965475804 164
5 EDLMC —0.681569729522127 0.7219472082808640.878365779471217
5 EDLNC —0.677470890386795 0.717106391666 3510.816 175103 863 965
5 EMDLC —0.661066 787854674 0.7507881909508710.825547 972881237
5 ENDLC —0.699400077125028 0.7121995897341980.971917 481788540
5 ERDLC —0.711398643362396 0.7006765382055240.974524234989478
5 EMMDC —0.648330548452229 0.7034443516910210.562930439711044
5 ENMDC —0.674547908194458 0.695690898527 7800.661117 634285177
5 ENNDC —0.684351860393684 0.6911830650630760.682880817 315341
5 ERLDC —0.698280398525304 0.6838248828731000.691111395 665 345
5 ERMDC —0.697114566288067 0.6844757029253340.691676546661112
5 ERNDC —0.694627041376425 0.685844 971947 3330.692 043562 350 866
5 NERDC —0.699646418753917 0.680110547 464 1130.687 244764652 366
5 RERDC —0.693500637 773340 0.6885839297223960.692 658892138212
5 RMEDC —0.660601489396589 0.706537 548164 1260.596 231780232299

sequences have three different kinds of generating rules. By the cyclic operation, we find
that the star transformations of critical points in dynamical systems of four letters have nine
rules for each TSSK sequence. The varieties of star transformations of TSSK sequences
imply that symbolic dynamics of trimodal or multimodal maps is rather more complex than
that of unimodal or bimodal maps.

Let %L.M stand for%L U By, %M,N for By U %N, %N.R for By UBr. We define
two cyclic permutation operators of two cyclic components as

o _(Z XY . EDC o —(Z XY . EDC 3.1)
'“\y z x , ¢ E D n=\x vy z , D C E '

whereo; is anticlockwise and;; clockwise cyclic, the sequence®,(X andY) and critical
points (£, D and C) form two components. Lef; = £+, Sp = £ and S¢ = %, which
represent the directions of parit§.= + is called the forward parity which implies the upper
sequence of the window§ = — the backward parity which implies the lower sequence of
the window.

Lemma 1.If (KcKgKp) = (ZEXDYC) is a TSSK sequence of arbitrary period, then for
the anticlockwise cyclic permutation operation, the following results hold

() BLy(of (ZESFT DX D"y cSer Mz E))

ZE-H(Z)XD—I(X)YC-H(Y) if Sp =+
< L (3.2)
ZE if Spg=—
(1) By n (0] (ZESET D X D70y StV 7 Ey)
= YC*T(Y)ZE*I(Z)XDf'E(X) if SC - _ (3 )

() By g(o] (ZESTD X DS Oy St z )
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XDyt zp-t® if Sp =+
{ P (3.2

XD if Sp=—

where j represents the number of cyclic permutations, g@né 0, 1, 2 corresponding to
Sg =+, S¢ = —, Sp = +, respectively. The parity inverse operatofor W € {Z, X, Y}
is defined as

+ if W is even

3.3
- if W is odd (3.3)

(W) ={

we sayW is evenif it contains an even number @ff’s and R’s, andodd otherwise.
Now we give only a concise explanation for (I) in lemma 1.jI& 0, (I) becomes
B, W(ZETDO X DT XycFWNzEy < ZETO xp T X yctr®), (3.4)
If j =1, () becomes

B, y(YCTTVZETDxpFXyc) < ZET O xp Xyt (3.59)
B, y(YCTNZETDXxpFDy(C) < ZE. (3.50)

If j =2, (l) becomes

B, XDy Nz D xpy <« ZEX@OXxp—*Wyct ™ (3.69)
B, m(XDTXOYyCcEFENZETDX DY < ZE.(3.6b) (3.60)

Becaused KcKgKp) = (ZEXDYC), its admissibility conditions read

%LM(ZE) < ZE %LM(XD) < ZE %LM(YC) < ZE (37a)
Byun(ZE)>YC  Byn(XD)>YC  Byy¥C)>YC (3.7)
By r(ZE) < XD By r(XD) < XD By r(YC) < XD. (3.7

By using the above admissibility conditions the proof of (1) is presented in appendix A,
and the proofs of (II) and (lll) are similar.

Lemma 2.If (KpKgKc) = (ZEYCXD) is a TSSK sequence of arbitrary period, then for
the clockwise cyclic permutation operation, we have

(1) B (0] (ZEST Py C5ev M x pSot 0 7 )

XDt X zgtt@yc—® if Sp =+
< L op (3.83)
XD if Sp=—
() By n (o] (ZESETDy St x pSreX) 7 By)
> .
ZET"Pyc " MxpTT® if Sp=—
() By g(o],(ZES* Py S5t x p$t ™ 7 £))
yct W xp—tX zg+t@ if S¢ =+
< L C (3.8c)
YC if SC = —

wherej =0, 1, 2 corresponding t&r = —, Sp = +, Sc = +, respectively.
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The proof of lemma 2 is similar to that of lemma 1 by using the following admissibility
conditions:
B, w(ZE) < XD B, u(YC) < XD B, u(XD) < XD (3.9)
By nn(ZE) > ZE BunYC)>ZE Bun(XD)>ZE (3.D)
By r(ZE) <YC ByrYC)<YC Byr(XD) <YC. (3.%)

Suppose that the star transformations satisfy the following distributive law of left
multiplication

(ZEXDYC) * (EDC) = (ZEXDYC)x E(ZEXDYC)* D(ZEXDYC) xC
— ZEXDS'T Xy St 7 gSev(D) x py ¢5ctW) 7 ESeT(D) x Syt X y ¢

whereSy Sc, Sk, Sp, S andS,; are signs of parity directions which takeor — depending
on the different types of star transformations.

For the generating rules of period-tripling of TSSK sequences, we have the following
theorem.

Theorem 1If (KcKgKp) = (ZEXDYC) is an arbitrary TSSK sequence, then the period-
tripling transformations will generate the following TSSK sequences:
(1) T1(0cX(ZEXDYC)) := (ZEXDYC) %1 ;0 (EDC)
=ZEXDTXycWzE" @D xpyc M zZETO X DTNy C (3.1()
(0 (ZEXDYC)) := (YCZEXD) 1.2 (CED)
=YCZET W xpTXyct* M zExpT*Oyct™MzET"@ XD (3.1M)
%1(02(ZEXDYC)) := (XDYCZE) %1 2 (DCE)
=XDYC W ZETOxp*OyczETT D xpXyct M zE (3.1)

(1) 262 (ZEXDYC)) := (ZEXDYC) %, 0 (EDC)

— ZEXDT®yct N zp-1Dxpyc-"Vzg"Dxp—Xyc (3.118)
T2(0(ZEXDYC)) := (YCZEXD) %1 (CED)

=YCZETDxp ™ Xyct W zExptOyct M zg—"@xp (3.11b)
T2(02(ZEXDYC)) := (XDYCZE) 52 (DCE)

=XDYC TV ZETTD XD XyCczZETT DX DT OyctVzE (3.11)

() T3(0X(ZEXDYC)) := (ZEXDYC) %30 (EDC)
— ZEXDTXyct Nz @D xpyc—" M zE"Dx pttOyc (3.129)
%3(0}(ZEXDYC)) ;= (YCZEXD) %3 1 (CED)
=YCZET O XD Xyct* M zExpT*OyctT™MzET DX p (3.1)
T3(02(ZEXDYC)) := (XDYCZE) %3 ;2 (DCE)
=XDYC W ZETTO XD NyCczETT D xpT®ycTVZE. (3.1%)
Theorem 1 can be proved from lemma 1 and admissibility conditiong<3)7

Theorem 2For another type of TSSK sequent€pKgKc) = (ZEYCXD), the period-
tripling transformations will generate the following TSSK sequences:

(1) T1(0c%(ZEYCXD)) := (ZEYCXD) %110 (ECD)
=ZEYCT WD X ZzETTDycx DT ZET@ycttMx D (3.1%)
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T1(0,(ZEYCXD)) := (XDZEYC) %1 ;1 (DEC)
=XDZE"PyctTWMxp "N zEyct M xp— Xz Dy (3.1%)
%103 (ZEYCXD)) := (YCXDZE) %1 ;12 (CDE)
=YCXDT W ZETT@DycNxpzETDyc W xpTXZE (3.1%)

(1) T2(c(ZEYCXD)) := (ZEYCXD) %310 (ECD)

=ZEYCT XD "X zETT@DycxptTT Oz Dyc*Wxp (3.149)
To(0,(ZEYCXD)) := (XDZEYC) %511 (DEC)

=XDZE"Pyc WM xp M zEyct M xpTX zETT Dy C (3.1%)
T2(0%(ZEYCXD)) := (YCXDZE) %312 (CDE)

=YCXDT W ZETTDycNxpzETDyc W xp X zE (3.1%)

() T3(c,(ZEYCXD)) := (ZEYCXD) %370 (ECD)
=ZEYCTWXDT X zETT@DycxptT* Oz @Dyc*Wxp (3.1%)
T3(01,(ZEYCXD)) := (XDZEYC) %311 (DEC)
=XDZE"Pyc WM xp* N zEyct M xpT Xz Dy C (3.1%)
T3(0%(ZEYCXD)) := (YCXDZE) %312 (CDE)
=YCXDV W zZETDycWxpzE"Pyc T VxpTXzZE. (3.1%)
Theorem 2 can be similarly proved from lemma 2 and admissibility conditiona{3)9
In theorems 1 and 2, we havex33 kinds of star transformations for each of the cyclic
ways in the period-tripling. They display the variety of types of star transformations. It

should be indicated that the TSSK sequences generated by the period-tripling transformations
in (3.11)—(3.1%) are all star products themselves.

4. Star transformations of period-doubling

4.1. Period-doubling transformations of TSSK sequences

In symbolic dynamics of two or three letters, the method to generate period-doubling
sequences is by using the star products of an arbitrary (doubly) superstable word and a
period-2 (doubly) superstable word. However, in symbolic dynamics of four letters, this
rule is not completely valid, a new generating rule is required. From the admissibility
conditions and the forms of period-doubling, we can see that the generating rules of period-
tripling of TSSK sequences and the period-doubling are mutually connected. We have the
following theorem.

Theorem 3.Suppose thatKcKgKp) = (ZEXDYC) is an arbitrary TSSK sequence, the
period-doubling transformations generate the following TSSK sequences:

D(0X(ZEXDYC)) := ZE(XDYC) %510 E(ZEXD) %3 10 DYC

=ZEXDTXyct M zE"@Dxpyc (4.13)
D(0(ZEXDYC)) := YC(ZEXD) %31 C(YCZE) %31 EXD
=YCZE" D XD " Oyct MzEXD (4.1b)

D(0?(ZEXDYC)) := XD(YCZE) %32 D(XDYC) %32 CZE
=XDYC " WZETDxp*XOyCZE. (4.1c)
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The proof of theorem 3 depends on the admissibility conditiong:{3)7 Using lemma 1
one can prove the theorem.

Theorem 4.Suppose thatKpKgKc) = (ZEYCXD) is an arbitrary TSSK sequence, the
period-doubling transformations generate the following TSSK sequences:

D (ZEYCXD)) := ZE(YCXD) %3170 E(ZEYC) %5 170 CXD

=ZEYCT WD "X ZzET@DyCcxD (4.20)
D(0},(ZEYCXD)) := XD(ZEYC) %32 D(XDZE) %3 EYC

=XDZE " @ycWxpXzEYC (4.20)
D(03(ZEYCXD)) := YC(XDZE) %312 C(YCXD) %372 DZE

=YCXDV W zZETDycWXDZE. (4.20)

Proof of theorem 4 depends on the admissibility conditionsa(3:p Using lemma 2
one can prove the theorem.

The generating rules of period-doubling have the parity symmetry. For period-doubling
of TSSK sequences in theorems 3 and 4 we seeSthahkes the same parity, whilg: (or
Sc) takes opposite parity among the expressiohda) and (4.2¢), (4.1b) and (4.2b), as
well as (4.1¢) and (4.2a). Thus SgSpSc remains unchanged in each pair of expressions.
Similarly, the preservation of parity symmetry occurs in the next paragraph. For period-
doubling of DSSK sequences in (l) of theorem 5, we also see Shand Sp in (4.4a)
have opposite signs to those (A.4b), so ScSp remains unchanged; while i@.5a) and
(4.5b) of (Il), ScSg remains unchanged.

4.2. Period-doubling transformations of DSSK sequences and cascades

The generating rule of period-doubling of DSSK sequences in the symbolic dynamics of
three letters is obtained on the basis of the up-star and down-star products of sequences
of critical points [21, 30] that in the symbolic dynamics of four letters can also be found

by the star transformations of sequences of critical points. One can also divide DSSK
sequences of four letters into two types of cyclic waysg|KcKp) = (ZE|XDYC) and
(Kp|KcKg) = (XD|ZEYC). Define two new cyclic permutation operators of two cyclic
components as

(z X Y ., E D C _(Z X Y . EDC)
emr=\z y x . E C D °v=\y x z ., ¢ p E) ™"

Then we have the following generating rule of period-doubling or star transformations.
Theorem 5.Suppose thatKg|KcKp) = (ZE|XDYC) and(Kp|KcKg) = (XD|ZEYC)

are arbitrary DSSK sequences, the period-doubling transformations generate the following
DSSK sequences:

(1) D(c?;(ZE|XDYC)) := (ZE|XDYC) %50 (E|DC) = (ZE|XDYC "V XD "My ()

(4.49)
D(o},,(ZE|XDYC)) := (ZE|YCXD) %1 11 (E|CD) = (ZE|[YCXDT™MycT M x D)

(4.40)
(1) D(c, (XD|ZEYC)) := (XD|ZEYC) %3 0 (D|EC) = (XD|ZEYCT MV ZET™@y(C)

(4.59)

D(o},(XD|ZEYC)) := (XD|YCZE) %32 (D|CE) = (XD|YCZE*"PyCc "V ZE).
(4.50)
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Admissibility conditions of (I) in theorem 5 read

B, y(ZE) < XD B, u(XD) < XD B, y(YC) < XD
%M’N(ZE) >YC %M,N(XD) >YC %M,N(YC) >YC
Byr(ZE) < ZE By r(XD) < ZE By r(YC) < ZE.

Admissibility conditions of (Il) in theorem 5 are

%L’M(ZE) < ZE %L’M(XD) < ZE %L’M(YC) < ZE
Bunn(ZE) > XD By n(XD)> XD Bun¥YC)>XD
%N,R(ZE) <YC %N,R(XD) <YC %NR(YC) < YC.

Theorem 5 can be easily proved by the admissibility conditions and the similar method
to prove lemma 1.

For a given DSSK sequend¢& r|KcKp) = (ZE|XDYC), whereKp, = YCXD and
K¢ = XDYC. The upper and lower sequenceskqf are SSSK sequenc&< ") X D and
YC*™MXD. The upper sequence §ICT* XD is YCT* M X D7) the lower sequence
of YCT™MXD is YCT' M XD ™™, They form the boundaries of the window &fp.
Thus the upper and lower boundaries of period-doubling seque@ce’ X DXy CX D
of Kp are YCTTNXD*XyCc—*Mxp—*X agnd YC VXD *®yct M xp-tX),
Similarly, the upper and lower sequences kf are SSSK sequence¥ D**XyC
and XD*@yC. The upper and lower boundaries of the window &f- are
XDTXyc+ M and XD*®yc+* ™, The upper and lower boundaries of period-
doubling sequenc& DT*XOYCH* N XDYC of K¢ are XD ®yct ™) x p—tXyct+t®)
and XDt ®yctt M x pr*Xyc+@)  Therefore the period-doubling bifurcations occur
at odd string C VX D*X and X DXy Cc*+ ™). The lower boundary ok, attaches
to the upper one of the period-doubling sequencekgf. The upper boundary oK¢
attaches to the lower one of the period-doubling sequendé-of The lower boundary of
K¢ attaches to the upper one &fp.

For a given DSSK sequenc& p|KcKg) = (XD|ZEYC), where Kc = ZEYC
and Kp = YCZE. The upper and lower boundaries of the window &t are
ZETDyCc—W and ZET@yCc*™, The upper and lower boundaries of period-
doubling sequenc& ET*@yC*MZEYC of K¢ are ZEt* D yCcTMzE-*@Dyc—M)
and ZEt*@ycTWzE+r*@Dyc—*™_  Similarly, the upper and lower boundaries
of the window of Ky are YCT* W ZE™@ and YCTTWZE~*%,  The upper and
lower boundaries of period-doubling sequend&t*WZET@YCZE of Ky are
YCHTNZE-TDyc—WMZET™@ and YCT N ZE-*DyctT™ M ZE-"@  Therefore the
period-doubling bifurcations occur at odd string&€t*@yCc—* andyct* Y ZET@),
The lower boundaries ak¢ and K connects with each other, and their upper boundaries
attach to the lower boundaries of their period-doubling sequences, respectively. Thus the
Feigenbaum period-doubling bifurcation will form a sequences of cascades.

From the generating rule of DSSK sequences, we can easily write the sequences of
period-doubling cascade

D" (E|DC) D*"(E|CD)
D*0"(DIEC) D*.:2"(D|CE).
For example, the beginnings of the sequenges 1, 2, 3,4...) are

D*.0"(E|DC) = (E|DC), (E|DLMC), (E|DLMMMLMC),
(E|IDLMMMLMLMLMMMLMC), ...,
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D" (E|CD) = (E|CD), (EINMDC), (EINMMMNMDC),
(EINMMMNMNMNMMMNMDC), ...,

D*.0"(D|EC) = (D|EC), (D|EMNC), (D[EMNLNMNC),
(DIEMNLNMNMNMNLNMNC), ...,

D*.2"(D|CE) = (D|CE), (D|RLEC), (D|[RLNLRLEC),
(DIRLNLRLRLRLNLRLEC), .. ..

Of course the sequences of zero topological entropy can be verified by the Milnor—Thusrston
characteristic polynomial [31,32]. Taking the limit af — oo, the boundary of zero
topological entropy (i.e. boundary of topological chaos [22]) can be obtained. The boundary
will be the complex fractal curved surface in the three-dimensional kneading space of
parameters. In addition, we can also see other quite complex fractal objects when taking
the limit of power of the various star transformations for the period-tripling, as in the
known symbolic dynamics [28, 33,34]. Now, turning to the phase space to discuss the
above example, we can obtain the regular fractal object with a constant fractal dimension,
because the power sequence of the star transformations is taken from only one of four
kinds of transformationgD*1/0"t, D*1.1"2 §*s.10"3 gndD*s:2"4) namely, the transformations

are pure. If the transformations are mixed, then taking from one pair of four kinds of
transformationg®*1:0" | D*1.11"2) gr (D*a0"3 D*3.2"4) respectively; the limit of the power
sequence may be an irregular multifractal object. Moreover, if the power sequencg

(or nz, ng) ({n1, n2, n3, n4} € Z,) is taken as a pseudorandom or random sequence and the
limit exists according to the probability convergence, then an interesting phenomenon will
occur in the Feigenbaum’s scenario, hamely, a new Feigenbaum period-doubling bifurcation
will possess the topological universality, because the symbolic sequence will preserve the
topological universality in the sense of a monotone equivalence class of maps. But the
metric universality will no longer be preserved, because the power of symbolic sequence is
pseudorandom or random. This leads to the disappearance of the universal scaling factor
and convergent rate [29]. The details of this interesting phenomenon will be discussed
elsewhere.

In the theorems 3 and 4, we have three kinds of star transformations for each of the
cyclic ways in the period-doubling for TSSK sequences, which may be determined by the
number of parameters of the maps. In theorem 5 we have two kinds of transformations for
DSSK sequences. They display a variety of genealogy of star transformations.

5. The method to generate SSSK sequences from TSSK sequences by star
transformations

An important method in symbolic dynamics of four letters to produce all the finite SSSK
sequences from TSSK sequences is similar to that of the symbolic dynamics of three
letters [26]. The star transformations can play a role. Since there exist three types of
star transformations, according to the admissibility conditions, for a given TSSK sequence,
SSSK sequences can be generated by the following theorem.

Theorem 6.Suppose thatKcKKp) = (ZEXDYC) is an arbitrary TSSK sequence, then
four different types of SSSK sequenags-|Kp|Kg) = (YC|XD|ZE) can be generated as
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follows:
Kc = (0XZEXDYC)) %0 C = ZET" D XD ™ MyC
() { Kp= (0} (ZEXDYC)) %12 D =YC " VZET" XD (5.1)
K = (62(ZEXDYC)) %9 0 E = XD Myct M zE
Kc = (0XZEXDYC)) %0 C = ZET" D XD "My
() Y Kp= (0} (ZEXDYC)) %22 D=YC "V ZET"DXD (5.2)
Kg = (02(ZEXDYC)) %10 E= XD Myc ™M zE
Ke = (0XZEXDYC)) %0 C = ZETTD XD Xy
() { Kp=(HZEXDYC)) %22 D=YC "M ZETDXD (5.3)
Kip = (02(ZEXDYC)) %0 E= XDV ®yctVzE
Ke = (0XZEXDYC)) %10 C = ZETTD X DTNy
(V) { Kp = (0}(ZEXDYC)) %2 D =YC "W ZE TP XD (5.4)
Kg = (02(ZEXDYC)) %30 E = XDV ®yct M zE,
The proof of theorem 6 can be completed by the admissibility conditions and lemma 1.

Theorem 7.Suppose thatK pKgK¢c) = (ZEYCXD) is an arbitrary TSSK sequence, then
four types of SSSK sequencékp|K¢|Kg) = (XD|YC|ZE) can be generated as follows:

Kp = (62 (ZEYCXD)) %12 D= ZE " Pyct VXD
() { Kc = (0(ZEYCXD)) %312 C = XDV X ZzET Dy C (5.5)
Kg = (05 (ZEYCXD)) %20 E=YCT VXD X zE
Kp = (0> (ZEYCXD)) %p s D= ZE " PyC " MXD
() Y Kc = (0,(ZEYCXD)) %12 C = XD X ZzETDyC (5.6)
Kg = (03 (ZEYCXD)) %p 0 E=YCT VXD ™M 7ZE
Kp = (0Y(ZEYCXD)) %y ;2 D =ZE"DyCcMXD
() { K¢ = (0,(ZEYCXD)) %352 C = XD X ZzET Dy C (5.7)
Kg = (04 (ZEYCXD)) 3,0 E=YCT VXD ™M ZE
Kp = (0(ZEYCXD)) %p,;2 D =ZE " @ycMXD
(IV) { Kc = (6},(ZEYCXD)) %32 C = XD XN ZETDyC (5.8)
Kg = (0% (ZEYCXD)) %30 E=YCTVXDTM7ZE,

The proof of theorem 7 can be completed by the admissibility conditions and lemma 2.

In theorems 6 and 7, we have four kinds of star transformations to generate SSSK
sequences for each of the cyclic ways from TSSK sequences. This enhances the variety of
genealogy of star transformations.

The three SSSK sequences in each of the above eight types are compatible. Further,
due to the continuity one can obtain the nonsuperstable kneading sequences with star
transformations again, therefore the upper and lower sequences of periodic window of SSSK
sequences are obtained. For instance, from TSSK sequéhcE€:Kp) = (ZEXDYC),
the SSSK sequences generated and their non-superstable kneading sequences are as follows:

%o 0C = ZETTO XD TNy C
%, 0C = ZETTPXDTTXYC

(ZEXDYC)
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Figure 3. A sketch of three kinds of period-doubling and their cascade for the TSSK sequence
ZEXDYC. The small circles represent projections of the joint of sequefE& DY C to the

three kneading coordinate planes. The black circles represent projections of the joints of three
period-doubling TSSK sequences 6 X DY C to the three kneading coordinate planes.

S E Dy Oy e s pE = ZETT D x p Xy ctt®)

s oE = ZETT D xpTXyc-t™)
%1 0E = ZETT D xp X yc—t™
sy pE=ZE " OXxp " ®yctt®
%0 2D =YC TV ZETPOXD

aD=YCT"MZETP XD

ZETT@xpTXyC

(YCZEXD)
*2,

%1 2C = YC TV ZETTD x =t
s 1C =YC TN ZETD x ptTX)

YCTMZETT@xp
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% 1C = yctt M 7z p—1(@) x pttX)
%1 2C = YCT W ZETT@ x p~rX)

s, 10E = XDt Xyct NzE

% 2E = XD "X yctzE

w1 0D = XDt Xyct Mz g-t(2)

sy 2D = XDTXyct )z g+r(2)

%1 2D = XD Xyt M zgtt@

%100 = XD TPyctt M zE1®),

Yct Mzg—"@xp {
(XDYCZE) {
xpt*®yct MzE {

XD " XyctMzE {

Similarly, we can produce a series of superstable and non-superstable kneading
sequences from star transformations for the period-doubling sequences of TSSK sequences
and obtain the upper and lower sequences of the windows of the period-doubling
sequences. The upper boundaries of windows of the basic periodic sequéaces
ZEXDYC and K = XDYCZE attach with the lower boundaries of windows of
their period-doubling sequencds, = ZET*A XD MyCct*MZEXDYC and K, =
XDt Xyctt W zE—*Z XpYCZE. While the lower boundary of the window of the
basic periodic sequend€p, = YCZE X D attaches to the upper boundary of the window of
its period-doubling sequendg,, = YC "M ZETA X p—*®yCZEXD. Thus the cascade
occurs. The period-doubling bifurcations occur at the non-superstable kneading sequences
ZETTOX DT Oyctt ™ xpttOycttMzE=2 and yCTMZET@O X DT that
are all odd strings. The relation of the period-doubling cascade is shown in figure 3.

In the symbolic dynamics of four letters, the varieties of star transformations of period-
tripling and period-doubling of TSSK sequences are obtained. They may help to find the
general rule of star products of four letters. However, what we present here is only a clue to
solving the problem. We predict that the complete star products in the symbolic dynamics
of four letters would be much more complicated than that of the symbolic dynamics of three
letters, because of the exponential growth of the kinds of star transformations.
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Appendix. The detailed proof of (I) in lemma 1

We first introduce a ternrgommon leading stringhat will be used frequently in the proof.
For two arbitrary wordsA, B and|A| > | B|, we seek their maximal common part, namely,
their intersectiond, when the first letters of two words are aligned from the headd I
not empty it is called the common leading string.Hf= B, B is called theleading string
of A

AssumingG;, € B, y(ZET*?) in (3.4), from (3.7a), if G is not the leading string
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of ZE, then (3.4) holds. Otherwis@; is odd, denotingZ E**») = G101, (3.4) reduces to
XD*XOycHMZE > 0. xD*Myct ") (A1)

where Q1 € By r(ZET?). Because bothQ; and X D% are even, from3.7c) we
have thatQ; is not the leading string ok D, and X D**¥ not the leading string 00,
s0 (A.1) holds. I1fXD~*? is not the leading string of1, (A.1) also holds. IfXD~*? s
the leading string of21, denotingQ; = XD~*? Q}, (A.1) reduces to

YyCrWzE - Q;XD"(X)YC”(Y) (A.2)

where Q) € By y(ZET*?). BecauseQ, is odd andy C~*™) even, from(3.7b) we have
that Q'1 is not the leading string of C, andYC %) is not the leading string oQ’l, o)
(A.2) is valid. If YC**™) is not the leading string 0], (A.2) also holds. IfyC**™ is
the leading string o0}, denotingQ; = YC+*¥ 0}, (A.2) reduces to

ZE > QXD "X®yct ™) (A.3)

where Q; € B, y(ZET™?). BecauseQ, is even, from(3.7a) we have thaiQ] is not the
leading string ofZE, so (A.3) is valid.

AssumingS; € B, (XD X)) in (3.4). From(3.7a) we have thaZ E**?) is not the
leading string ofS;. If S; is not the leading string of E, then (3.4) holds. Otherwis&
is even, denotingZ E+*®) = §1Ty, and (3.4) reduces to

YC* W ZE < XD Pyt (A-4)

where Ty € By ny(ZET?). Becausel; is odd andy C—*") even, from(3.7h) we have
that 71 is not the leading string of C andY C—*) is not the leading string ofy, so (A.4)
holds. If YC**™ is not the leading string dfy, (A.4) also holds. 1Y C*t*™ is the leading
string of 71, denoting?y = YC+* "1y, (A.4) reduces to

ZE > T,XD *®yct® (A.5)

whereT; € B, y(ZET"?). Becausel; is even, from(3.7a) we have thatf; is not the
leading string ofZE and (A.5) is valid.

AssumingU; € B, (Y CF 1) in (3.4), we have from3.7a) that ZE+*?) is not the
leading string ofU;. If U; is not the leading string of E then (3.4) holds. Otherwis&;
is odd, denotingZ ET*%) = U, V; and (3.4) reduces to

ZE > Vi XD " ®yct® (A.6)

whereV; € B, ,(ZET*?). BecauseV; is even, from(3.7a) we have that/; is not the
leading string ofZE, (A.6) is valid.

The proof of(3.4) is completed.

AssumingG; € B, ,(YC*P)) in (3.54), we have from3.7a) that ZE**? is not the
leading string ofG,. If G» is not the leading string of E, then (3.5a) holds. Otherwise
G, is odd, denotingZ E¥*® = G, 0>, (3.5a) reduces to

ZEJr'L'(Z)XD:tT(X)YC > QZXD*T(X)YC‘FT(Y) (A?)

where Q;, € B, (ZET™?). BecauseQ; is even, from(3.7a) we have thatQ, is not the
leading string ofZE and (A.7) is valid.

AssumingS, € B, y(ZET*?) in (3.5a). From (3.7a), if S, is not the leading string
of ZE, then (3.54) holds. OtherwiseS, is odd, denotingZE**¥ = S,T, and (3.5a)
reduces to

XD¥NyC > LxD " MPyct™ (A.8)
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whereT € By g(ZET*@), Becausel, and X DX are even, from(3.7¢) we have that
T is not the leading string ok D and X D™ is not the leading string of», so (A.8)
is valid. If XD~ jis not the leading string of>», (A.8) also holds. IfXD*®) is the
leading string of7, denotingT, = XD~*XT,, (A.8) reduces to
YC < T,XD " X®yct® (A.9)

whereT, € By y(ZE**?). Becausel, is odd, we have fron(3.7b) that 7, is not the
leading string ofY C and (A.9) is valid.

AssumingU, € B, ,(XD**X) in (3.5a) we have from(3.7a) that ZE**? is not
the leading string oU,. If U is not the leading string af E then(3.54) holds. Otherwise
U, is even, denotingZ E**® = U,V, and (3.54) reduces to

YC < VoXD " ®yctt®) (A.10)

where V, € By y(ZET™?). BecauseV, is odd, we have fron(3.7b) that V; is not the
leading string ofY C and (A.10) is valid.

The proof of(3.5a4) is completed.

AssumingGz € B, (YC*Y)) in (3.5b), from (3.7a), if Gz is not the leading string
of ZE, then (3.5b) holds. Otherwisg5s is odd, denotingZE = G3Q3FE, (3.5b) reduces
to

ZETTDXDFENYC > Q3E (A.11)
where Q3E € B, y(ZE). From (3.7a) we have (A.11).
AssumingSsz € B, »(ZE~*?) in (3.5b), from (3.7a), if S3 is not the leading string
of ZE, then(3.5b) holds. OtherwiseSs is odd. DenotingZ E = S3T3E, (3.5b) reduces to
XDFXyC > TZE (A.12)
whereT:E € By r(ZE). From (3.7¢) we have thatX DX is not the leading string of

T3E. If XD~*X) is not the leading string dfsE, then (A.12) is valid. Otherwise, denoting
T:E = XD "™ T,E, (A.12) reduces to

YC < T3E (A.13)
whereT;E € By y(ZE). From (3.7b) we have (A.13).
AssumingUz € B, (XD X)) in (3.5b), from (3.7a), if Uz is not the leading string
of ZE, then(3.5b) holds. Otherwisd/; is even, denotingg E = U3V3E, (3.5b) reduces to
YC < V3E (A.14)

whereV3E € By v(ZE). From (3.7b) we have (A.14).

The proof of(3.5b) is completed.

AssumingG, € By (XD X)) in (3.6a), from (3.7a), if G4 is not the leading string
of ZE, then (3.6a) holds. OtherwiseG,4 is even. DenotingZE**® = G4Qa4, (3.6a)
reduces to

YCETDVZET*Dx D < Q4XD—T(X)YC+T(Y) (A.15)

where Q4 € By, v(ZETT?), BecauseQ, is odd andy C~*") even, from(3.7b) we have
that Q4 is not the leading string of C and YC ™ is not the leading string 004, so
(A.15) is valid. If YC**® is not the leading string 004, (A.15) also holds. IfyCc+*®
is the leading string o4, denotingQ4 = YC**") Q), (A.15) reduces to

ZET'DXD > Q,xD "Xyt ® (A.16)

where Q, € B, y(ZET™?). BecauseQ, is even, we have froni3.7a) that Q, is not the
leading string ofZE and (A.16) is valid.
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AssumingS, € B, (Y CEF D) in (3.6a), from (3.7a), if S, is not the leading string
of ZE, then(3.6a) holds. Otherwises, is odd. DenotingZ EY*® = §,T4, (3.6a) reduces
to

ZETDXD > TyxD " Pyct™ (A.17)

where T, € B, ,(ZET*?). Becausely, is even, from(3.7a) we have thatly is not the
leading string ofZE and (A.17) is valid.

AssumingUy € B y(ZE*T™@) in (3.6a), from (3.7a), if Uy is not the leading string
of ZE, then(3.6a) holds. Otherwisd/, is odd. DenotingZ ET*%) = U,V,, (3.6a) reduces
to

XD > VXD " XPyct® (A.18)

whereV, € By r(ZET™?). BecauseV, is even, from(3.7c¢) we have thatV, is not the
leading string ofX D and (A.18) is valid.

The proof of(3.6a) is completed.

AssumingGs € B (X D" ™) in (3.6b), from (3.7a), if Gs is not the leading string
of ZE, then(3.6b) holds. OtherwisdGs is even. DenotingZ E = G5Q0sE, (3.6b) reduces
to

YCEF W ZETTDXD < QsE (A.19)

where QsE € B, v(ZE). From (3.7b) we have thatr C—*") is not the leading string of
OsE. If YCT*) is not the leading string 0DsE, then (A.19) holds. Ify C**®) is the
leading string ofQsE, denotingQsE = YCT* M O E, (A.19) reduces to

ZETTDXD > QE (A.20)

where Q.E € B, ,(ZE). (A.20) is valid from(3.7a).
AssumingSs € B, 4 (YCEFD) in (3.6b), from (3.7a), if Ss is not the leading string
of ZE, then(3.6b) holds. Otherwisess is odd. DenotingZ E = SsTsE, (3.6b) reduces to

ZETTYDXD > TsE (A.21)

whereTsE € B, »(ZE). (A.21) holds from(3.7a).
AssumingUs € B, 4 (ZE~*?) in (3.6b), from (3.7a), if Us is not the leading string
of ZE, then(3.6b) holds. Otherwisd/s is odd. DenotingZ E = UsVsE, (3.6b) reduces to

XD > VsE (A.22)

whereVsE € By r(ZE). (A.22) holds from(3.7¢).
The proof of(3.6b) is completed.
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