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Abstract. The composition rules of period-tripling and period-doubling in symbolic dynamics
of four letters are proposed. The methods to generate various singly and doubly superstable
kneading sequences from triply superstable kneading sequences are given. These composition
rules and methods will present all the essential elements in the three-dimensional parameter
space, including the‘joint’ , ‘bones’, ‘membrane surfaces’on the ‘skeleton’ and many fractal
objects constructed by period-doubling and period-tripling bifurcations. It is shown that the
generalization from unimodal and bimodal to trimodal maps is not trivial. And the promptly
exponential growth in the kinds of star transformations is even seen when the number of critical
points (or parameters) of the map increases.

1. Introduction

Many achievements have been made in the study of the symbolic dynamics of one-
dimensional unimodal and bimodal maps [1–7]. In the studies of multimodal maps, symbolic
dynamics of trimodal maps has received increasing attention [8–10].

In classical and quantum physics there are a number of interesting systems; their
dynamical behaviour can approximately be modelled by trimodal and even multimodal
maps with different parameters. Suppose that the physical system has a rather more
complex potential than a single well, such as a cubic, quartic or other higher power
potential (multiwell potential). They may have the property of a multimodal map.
However, we cannot see immediately the connection between the real physical system
and their corresponding iterative dynamics. Generally, there are two approaches to
study the dynamical behaviour of real physical systems. One is the approximation of
the first-order difference equation [11] to physical systems. For classical mechanics in
the one-dimensional case, we have easily the first-order nonlinear autonomous equation
x ′ = ±[ 2

m
(E − V (x))]1/2 ≡ G(x, c); E,V (x) are initial energy and potential energy

depending on the coordinatex of the particle,c are control parameters. Under the difference
approximation their dynamics can be viewed as a mapping formxn+1=xn+G(xn, c). When
G(x, c) = a0x

4+ b0x
3+ c0x

2+ d0x + e0, these are standard trimodal maps. They may be
the physical models of polynomial potentials and other quartic effective potential models.
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‖ Address for correspondence.
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For the optical system, for instance, the periodic and chaotic behaviours come from the
instability of the hybrid bistable optical cavity with liquid crystal medium. This leads to
the mathematical models of symbolic dynamics of a general trimodal map [12–14], or in
the simplified case, the sine-square map is a special one with two equally high peaks [8, 9]
in the sense of first-order difference. Second is the Poincaré section method of second-
order differential equations. Using this method most physical systems can be modelled
as iterative dynamics by the first return map in the Poincaré section [15]. Unfortunately,
almost all iterative dynamics in the Poincaré section observed in the numerical study are
the multimodal maps with one or more discontinuous points. A typical example is the well
known Lorenz equations [15, 16], their iterative dynamics can be modelled by the map of
four letters with one discontinuous point [16]. Many physical systems are discontinuous
maps such as strongly dissipative systems [17–19]. Although we study the continuous map
in this paper, the discontinuous map can be regarded as the breaking or pruning of the
continuous map at a region [17–19]. Symbolic dynamics of three-parameter families of
general trimodal maps may relate to, for instance, the general circle maps with two non-
monotonic intervals [20]. The clearer the continuous map we understand, the deeper the
discontinuous map we study. It is our aim to approach real physical systems in this way.

The key rule in symbolic dynamics is the star product. Early on, Derridaet al [2]
presented a complete expression of the star product for unimodal maps of two letters.
Over the past decade some important results have been obtained for bimodal maps of
three letters [21–30]. For the one-dimensional symbolic dynamics of continuous maps the
next problem to be tackled is the star product of trimodal maps of four letters. Because
their dynamical behaviours are generally rather more complex than unimodal and bimodal
maps and will display the generic character of continuous maps that unimodal and bimodal
ones do not have. For instance, the character of a cyclic group caused by three or more
critical points of the map. To date for trimodal maps we have only preliminary results
[8–10]. However, seeking their complete start products will be a cumbersome and difficult
task mathematically, because the essential rules of the composition operations of period-
doubling and period-tripling have not yet been set up. Our work will be parallel to the
work of MacKay and Tresser on the bimodal case [21]. It is appropriate to seek somestar
transformations, we describe them in this way as they do not formcompletestar products.
Obtaining these star transformations is only the first step to explore the complete star
products. After having understood these preliminary rules we will then be able to obtain
some clues to the construction of the complete star products, as in the case of bimodal
maps [21, 22]. Ringland and Tresser [26, 27] generated a genealogy of finite kneading
sequences by using the hierarchical transformations forα-seed,ψ-seeds andχ -seed. They
present all monotone equivalence classes of the kneading sequence. In this paper we also
generate a genealogy of the kneading sequences with three critical points which form the
variety of star transformations by cyclic rules of parity. We present not only the monotone
equivalence classes, but also the equal entropy classes which are renormalizable. As the
star transformations are not yet complete star products, the monotone equivalence and the
equal entropy classes here are only a part of that to be found in the future.

It is revealed that the composition rules of the symbolic sequences in trimodal maps
are not trivial generalizations from those of star products in unimodal and bimodal maps.
This non-triviality stems from the following. (i) The power sequenceW ∗n of star products
(or transformations) of a primitive wordW is the formal expression of renormalization.
One realizes that there is only one kind of star product (i.e. the Derrida–Gervois–Pomeau∗
product [2]) for the symbolic dynamics of two letters in unimodal maps and two kinds of
dual star products for the symbolic dynamics of three letters in bimodal maps [21, 29, 30].



Star transformations in symbolic dynamics 8433

It is found that there are 3× 3 types of rules for period-tripling for triply superstable words
in trimodal maps. It is surprising that the number of star transformations, or probably star
products, increases exponentially. We conjecture that the number of star transformations is
related to the number of cyclic ways which are composed of periodic orbits of critical points.
Thus the varieties of star transformations increase the complexity in the renormalization.
(ii) A non-trivial generalization in the symbolic dynamics of four letters is the composition
operations of period-doubling. One knows that for symbolic dynamics of two or three
letters, the rules of period-doubling of a wordW are just thedirect star products of period-
2 superstable or doubly superstable words such asW ∗RC andW∗DC or W∗CD [21, 30].
However, for symbolic dynamics of four letters, there are no direct star products for period-
doubling. We need to modify the distributive law of multiplications in the star products,
or exactly, period-doubling will be realized by new kinds of star transformations. (iii)
The increase of the number of star transformations of period-doubling leads to a variety of
routes to chaos. An important phenomenon will occur in the Feigenbaum scenario, namely,
new Feigenbaum period-doubling bifurcations will possess topological universality but not
metric universality (namely, the universal scaling factors and convergent rates disappear)
[29].

Summarizing the above, the symbolic dynamics of four letters has many non-trivial
features. These non-trivial features would come from the complex permutation of the
cyclic group of three critical points, which are not present for the two critical points case.
In order to reflect the complexity of the symbolic dynamics of trimodal maps, we introduce
some new quantities: the two cyclic permutation operatorsσI,II of two cyclic components
and the directionsSC,D,E of parity of the three critical points. The two cyclic ways are
anticlockwise and clockwise, and two cyclic components are the three sequencesZ,X, Y and
critical pointsE,D,C. The two quantities make the star transformations form a harmonic
formalism under cyclic permutation. This expresses the generic characters of the continuous
map with multicritical points. It is believable that they also provide a simple prototype to
probe the complexity.

This paper is organized as follows. In section 2 the kneading space, word-lifting
technique and admissibility conditions of trimodal quartic maps are introduced. In section 3
the star transformations of period-tripling for an arbitrary triply superstable kneading
(TSSK) sequence are presented and new mathematical quantities are introduced. The star
transformations of period-doubling of TSSK sequences and the rules of period-doubling
cascade of arbitrary doubly superstable kneading (DSSK) sequences are discussed in
section 4. Finally in section 5 the method to generate singly superstable kneading (SSSK)
sequences from TSSK sequences is given by the star transformations.

2. Preliminaries of symbolic dynamics of trimodal map

2.1. Kneading space

Let the horizontal coordinates of three critical pointsC, D andE bea, b andc respectively.
The general quartic map can be written as

y = f (x) = −λ
(

1

4
x4− a + b + c

3
x3+ ab + ac + bc

2
x2− abcx

)
+ δ. (2.1)

According to the successive signs of the slope off (x) on its four intervals of monotonicity,
the quartic map can be divided into two types:(+ − +−) for λ > 0, and(− + −+) for
λ < 0. In this paper we only consider the(+−+−) type, the discussion of the(−+−+)
type is similar.
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Figure 1. Schematic graphs of maps corresponding to boundary lines and boundary planes in
three-dimensional kneading space. Points A1, A2, A3 and O correspond to graphs of maps
(a)–(d), respectively. The coordinate axesKC , KE andKD correspond to graphs of maps (e)–
(g), respectively. The kneading planes A1A2O, A2A3O and A3A1O corresponding to graphs of
maps (h)–(j), respectively.

For the(+−+−) quartic map, the conditions of the interval map should bef (−1) = −1,
f (+1) = −1. The four successive subintervals of monotonicity of the interval [−1,+1]
are denoted asL, M, N , and R by turns from left to right with the natural order
L ≺ C ≺ M ≺ D ≺ N ≺ E ≺ R where≺ is the MSS order [1] or lexicographical
order,L andN are monotone increasing, andM andR monotone decreasing.

The three-dimensional kneading space of words in the symbolic dynamics of four letters
is a direct extension of the two-dimensional kneading plane in the symbolic dynamics of
three letters [21]. The kneading sequences starting from the three critical points denoted by
KC , KD andKE , respectively. Let three coordinate axes correspond toKC , KD andKE ,
then a three-dimensional space of kneading sequence is formed. The arrows in three axes
indicate the directions of increasing in the order of words. The upper and lower boundaries
of KC , KD andKE areRL∞ andL∞, respectively. The schematic graphs of various maps
in the kneading space are given in figure 1.

In order to express the bifurcation structure of three-parameter families of trimodal
maps, we need to describe kneading sequences in the three-dimensional space. An arbitrary
singly superstable periodic orbit will span a curved surface called the‘membrane surface’
in this space. If the two singly superstable periodic orbits are compatible [8], then their
two membrane surfaces will intersect a common curve called the‘bone’. If the three
singly superstable periodic orbits are compatible, then their three membrane surfaces will
intersect a common point called the ‘joint’. Of course, the two-dimensionalskeletonin
[21] is extended to the three-dimensional one. Figure 2 gives a sketch of the projections of
kneading sequences in the three kneading coordinate planes in which the period of singly
superstable periodic orbits is smaller than or equal to 4.
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Figure 2. A sketch of the kneading sequences of period smaller than or equal to 4 in the
kneading space for the quartic map. The black circles represent projections of the joints to the
three kneading coordinate planes.

2.2. Word-lifting technique of quartic maps

In this section the parameters of quartic maps are given by the word-lifting technique [6].
The four inverse functions of the map (2.1) are listed as follows:

f −1
L =

µ

2

(√
2t0+

√
2t0− 4

(
p

2
+ t0+ q√

8t0

))
+ ν

f −1
M =

µ

2

(√
2t0−

√
2t0− 4

(
p

2
+ t0+ q√

8t0

))
+ ν

f −1
N = −

µ

2

(√
2t0−

√
2t0− 4

(
p

2
+ t0− q√

8t0

))
+ ν

f −1
R = −

µ

2

(√
2t0+

√
2t0− 4

(
p

2
+ t0− q√

8t0

))
+ ν

(2.2)
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wheret0 is the real positive root of the following cubic equation

t3+ pt2+
(
p2

4
+ y − ν

µ
− γ

)
t − q

2

8
= 0 (2.3)

and

ν = a + b + c
3

µ =
(
−4

λ

)1/3

(λ > 0)

p = −λµ
(

3

2
ν2− (a + b + c)ν + ab + ac + bc

2

)
q = −λ(ν3− (a + b + c)ν2+ (ab + ac + bc)ν − abc)
γ = − λ

µ

(
ν4

4
− (a + b + c)ν

3

3
+ (ab + ac + bc)ν

2

2
− abcν

)
+ δ − ν

µ
.

Consider a TSSK sequence(KCKEKD) = (ZEXDYC), whereKC = ZE, KE = XD
andKD = YC are the superstable kneading sequences of the critical pointsC, D andE,
respectively. Assume thatZE = z1z2 . . . znE, XD = x1x2 . . . xlD andYC = y1y2 . . . ymC

(zi, xi, yi ∈ {L,M,N,R}), then the systems of equations of parameters are

f (a) = f −1
z1
◦ f −1

z2
◦ · · · ◦ f −1

zn
(c)

f (c) = f −1
x1
◦ f −1

x2
◦ · · · ◦ f −1

xl
(b)

f (b) = f −1
y1
◦ f −1

y2
◦ · · · ◦ f −1

ym
(a).

(2.4)

Combining the conditions of the interval map, the relationship between the parameters read

b = − a + c
1+ 3ac

λ = 4(1+ δ)
1+ 2(ab + ac + bc) . (2.5)

Using the iterative method, the parameter valuesa, c andδ can be calculated. Table 1 lists
the values of the kneading parameters for TSSK sequences of period 3–5.

2.3. Admissibility conditions

Let BL, BM , BN andBR be the sets of all subsequences which followL, M, N andR,
respectively. Assume thatW is an admissible word, then the admissibility conditions are
as follows [31]:

BL(W) 6 KC KD 6 BM(W) 6 KC
KD 6 BN(W) 6 KE BR(W) 6 KE.

(2.6)

WhenKC , KD andKE are superstable kneading sequences, the admissibility conditions turn
into pure inequalities. Obviously the kneading sequences themselves should also satisfy the
admissibility conditions

BL(KC,KD,KE) 6 KC KD 6 BM(KC,KD,KE) 6 KC
KD 6 BN(KC,KD,KE) 6 KE BR(KC,KD,KE) 6 KE.

(2.7)

3. Varieties of star transformations of period-tripling of TSSK sequences

The method to produce TSSK sequences can be obtained by the star transformations of three
critical points. The periodic points of TSSK sequences of finite period belong to the cyclic
group which possesses two different types of cyclic ways,(KCKEKD) = (ZEXDYC) and
(KDKEKC) = (ZEYCXD). According to the admissibility conditions we find that TSSK
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Table 1. The values of kneading parameters of the(ZEXDYC) TSSK sequences of period 3–5
for the quartic map.

Period Sequencea c δ

3 EDC −0.663 307 953 129 798 0.699 930 313 522 219−0.624 636 883 352 953
4 EDLC −0.685 205 996 622 996 0.726 195 072 264 293−0.936 339 412 433 705
4 EMDC −0.631 287 900 353 161 0.702 979 509 029 810−0.482 208 991 407 285
4 ENDC −0.679 940 949 756 513 0.693 291 406 985 949−0.674 449 665 297 450
4 ERDC −0.696 078 325 316 184 0.685 049 377 798 136−0.691 965 475 804 164
5 EDLMC −0.681 569 729 522 127 0.721 947 208 280 861−0.878 365 779 471 217
5 EDLNC −0.677 470 890 386 795 0.717 106 391 666 351−0.816 175 103 863 965
5 EMDLC −0.661 066 787 854 674 0.750 788 190 950 871−0.825 547 972 881 237
5 ENDLC −0.699 400 077 125 028 0.712 199 589 734 198−0.971 917 481 788 540
5 ERDLC −0.711 398 643 362 396 0.700 676 538 205 524−0.974 524 234 989 478
5 EMMDC −0.648 330 548 452 229 0.703 444 351 691 021−0.562 930 439 711 044
5 ENMDC −0.674 547 908 194 458 0.695 690 898 527 780−0.661 117 634 285 177
5 ENNDC −0.684 351 860 393 684 0.691 183 065 063 070−0.682 880 817 315 341
5 ERLDC −0.698 280 398 525 304 0.683 824 882 873 100−0.691 111 395 665 345
5 ERMDC −0.697 114 566 288 067 0.684 475 702 925 334−0.691 676 546 661 112
5 ERNDC −0.694 627 041 376 425 0.685 844 971 947 333−0.692 043 562 350 866
5 NERDC −0.699 646 418 753 917 0.680 110 547 464 113−0.687 244 764 652 366
5 RERDC −0.693 500 637 773 340 0.688 583 929 722 396−0.692 658 892 138 212
5 RMEDC −0.660 601 489 396 589 0.706 537 548 164 126−0.596 231 780 232 299

sequences have three different kinds of generating rules. By the cyclic operation, we find
that the star transformations of critical points in dynamical systems of four letters have nine
rules for each TSSK sequence. The varieties of star transformations of TSSK sequences
imply that symbolic dynamics of trimodal or multimodal maps is rather more complex than
that of unimodal or bimodal maps.

Let BL,M stand forBL ∪BM , BM,N for BM ∪BN , BN,R for BN ∪BR. We define
two cyclic permutation operators of two cyclic components as

σI =
(
Z X Y , E D C

Y Z X , C E D

)
σII =

(
Z X Y , E D C

X Y Z , D C E

)
(3.1)

whereσI is anticlockwise andσII clockwise cyclic, the sequences (Z, X andY ) and critical
points (E, D andC) form two components. LetSE = ±, SD = ± and SC = ±, which
represent the directions of parity.S = + is called the forward parity which implies the upper
sequence of the window,S = − the backward parity which implies the lower sequence of
the window.

Lemma 1.If (KCKEKD) = (ZEXDYC) is a TSSK sequence of arbitrary period, then for
the anticlockwise cyclic permutation operation, the following results hold

(I) BL,M(σ
j

I (ZE
SEτ(Z)XDSDτ(X)YCSCτ(Y )ZE))

<

{
ZE+τ(Z)XD−τ(X)YC+τ(Y ) if SE = +
ZE if SE = −

(3.2a)

(II) BM,,N(σ
j

I (ZE
SEτ(Z)XDSDτ(X)YCSCτ(Y )ZE))

>

{
YC if SC = +
YC−τ(Y )ZE−τ(Z)XD−τ(X) if SC = −

(3.2b)

(III) BN,R(σ
j

I (ZE
SEτ(Z)XDSDτ(X)YCSCτ(Y )ZE))
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<

{
XD+τ(X)YC+τ(Y )ZE−τ(Z) if SD = +
XD if SD = −

(3.2c)

where j represents the number of cyclic permutations, andj = 0, 1, 2 corresponding to
SE = +, SC = −, SD = +, respectively. The parity inverse operatorτ for W ∈ {Z,X, Y }
is defined as

τ (W) =
{
+ if W is even

− if W is odd
(3.3)

we sayW is even if it contains an even number ofM ’s andR’s, andodd otherwise.

Now we give only a concise explanation for (I) in lemma 1. Ifj = 0, (I) becomes

BL,M(ZE
+(Z)XD±τ(X)YC±τ(Y )ZE) < ZE+(Z)XD−τ(X)YC+τ(Y ). (3.4)

If j = 1, (I) becomes

BL,M(YC
−τ(Y )ZE+τ(Z)XD±τ(X)YC) < ZE+(Z)XD−τ(X)YC+τ(Y ) (3.5a)

BL,M(YC
−τ(Y )ZE−τ(Z)XD±τ(X)YC) < ZE. (3.5b)

If j = 2, (I) becomes

BL,M(XD
+τ(X)YC±τ(Y )ZE+τ(Z)XD) < ZE+(Z)XD−τ(X)YC+τ(Y ) (3.6a)

BL,M(XD
+τ(X)YC±τ(Y )ZE−τ(Z)XD) < ZE.(3.6b) (3.6b)

Because(KCKEKD) = (ZEXDYC), its admissibility conditions read

BL,M(ZE) < ZE BL,M(XD) < ZE BL,M(YC) < ZE (3.7a)

BM,N(ZE) > YC BM,N(XD) > YC BM,N(YC) > YC (3.7b)

BN,R(ZE) < XD BN,R(XD) < XD BN,R(YC) < XD. (3.7c)

By using the above admissibility conditions the proof of (I) is presented in appendix A,
and the proofs of (II) and (III) are similar.

Lemma 2.If (KDKEKC) = (ZEYCXD) is a TSSK sequence of arbitrary period, then for
the clockwise cyclic permutation operation, we have

(I) BL,M(σ
j

II (ZE
SEτ(Z)YCSCτ(Y )XDSDτ(X)ZE))

<

{
XD+τ(X)ZE+τ(Z)YC−τ(Y ) if SD = +
XD if SD = −

(3.8a)

(II) BM,N(σ
j

II (ZE
SEτ(Z)YCSCτ(Y )XDSDτ(X)ZE))

>

{
ZE if SE = +
ZE−τ(Z)YC−τ(Y )XD−τ(X) if SE = −

(3.8b)

(III) BN,R(σ
j

II (ZE
SEτ(Z)YCSCτ(Y )XDSDτ(X)ZE))

<

{
YC+τ(Y )XD−τ(X)ZE+τ(Z) if SC = +
YC if SC = −

(3.8c)

wherej = 0, 1, 2 corresponding toSE = −, SD = +, SC = +, respectively.
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The proof of lemma 2 is similar to that of lemma 1 by using the following admissibility
conditions:

BL,M(ZE) < XD BL,M(YC) < XD BL,M(XD) < XD (3.9a)

BM,N(ZE) > ZE BM,N(YC) > ZE BM,N(XD) > ZE (3.9b)

BN,R(ZE) < YC BN,R(YC) < YC BN,R(XD) < YC. (3.9c)

Suppose that the star transformations satisfy the following distributive law of left
multiplication

(ZEXDYC) ∗ (EDC) = (ZEXDYC) ∗ E(ZEXDYC) ∗D(ZEXDYC) ∗ C
= ZEXDSDτ(X)YCSCτ(Y )ZESEτ(Z)XDYCS

′
Cτ(Y )ZES

′
Eτ(Z)XDS

′
Dτ(X)YC

whereSD SC , SE , S
′
D, S

′
C andS

′
E are signs of parity directions which take+ or− depending

on the different types of star transformations.
For the generating rules of period-tripling of TSSK sequences, we have the following

theorem.

Theorem 1.If (KCKEKD) = (ZEXDYC) is an arbitrary TSSK sequence, then the period-
tripling transformations will generate the following TSSK sequences:

(I) T1(σ
0
I (ZEXDYC)) := (ZEXDYC) ∗1,I 0 (EDC)

= ZEXD+τ(X)YC−τ(Y )ZE−τ(Z)XDYC−τ(Y )ZE−τ(Z)XD−τ(X)YC (3.10a)

T1(σ
1
I (ZEXDYC)) := (YCZEXD) ∗1,I 1 (CED)

= YCZE+τ(Z)XD+τ(X)YC+τ(Y )ZEXD+τ(X)YC+τ(Y )ZE−τ(Z)XD (3.10b)

T1(σ
2
I (ZEXDYC)) := (XDYCZE) ∗1,I 2 (DCE)

= XDYC−τ(Y )ZE+τ(Z)XD−τ(X)YCZE+τ(Z)XD−τ(X)YC+τ(Y )ZE (3.10c)

(II) T2(σ
0
I (ZEXDYC)) := (ZEXDYC) ∗2,I 0 (EDC)

= ZEXD+τ(X)YC+τ(Y )ZE−τ(Z)XDYC−τ(Y )ZE−τ(Z)XD−τ(X)YC (3.11a)

T2(σ
1
I (ZEXDYC)) := (YCZEXD) ∗2,I 1 (CED)

= YCZE+τ(Z)XD−τ(X)YC+τ(Y )ZEXD+τ(X)YC+τ(Y )ZE−τ(Z)XD (3.11b)

T2(σ
2
I (ZEXDYC)) := (XDYCZE) ∗2,I 2 (DCE)

= XDYC−τ(Y )ZE−τ(Z)XD−τ(X)YCZE+τ(Z)XD−τ(X)YC+τ(Y )ZE (3.11c)

(III) T3(σ
0
I (ZEXDYC)) := (ZEXDYC) ∗3,I 0 (EDC)

= ZEXD+τ(X)YC+τ(Y )ZE−τ(Z)XDYC−τ(Y )ZE−τ(Z)XD+τ(X)YC (3.12a)

T3(σ
1
I (ZEXDYC)) := (YCZEXD) ∗3,I 1 (CED)

= YCZE+τ(Z)XD−τ(X)YC+τ(Y )ZEXD+τ(X)YC+τ(Y )ZE+τ(Z)XD (3.12b)

T3(σ
2
I (ZEXDYC)) := (XDYCZE) ∗3,I 2 (DCE)

= XDYC−τ(Y )ZE−τ(Z)XD−τ(X)YCZE+τ(Z)XD−τ(X)YC−τ(Y )ZE. (3.12c)

Theorem 1 can be proved from lemma 1 and admissibility conditions (3.7a–c).

Theorem 2.For another type of TSSK sequence(KDKEKC) = (ZEYCXD), the period-
tripling transformations will generate the following TSSK sequences:

(I) T1(σ
0
II (ZEYCXD)) := (ZEYCXD) ∗1,I I 0 (ECD)

= ZEYC+τ(Y )XD−τ(X)ZE+τ(Z)YCXD+τ(X)ZE+τ(Z)YC+τ(Y )XD (3.13a)
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T1(σ
1
II (ZEYCXD)) := (XDZEYC) ∗1,I I 1 (DEC)

= XDZE−τ(Z)YC+τ(Y )XD−τ(X)ZEYC+τ(Y )XD−τ(X)ZE+τ(Z)YC (3.13b)

T1(σ
2
II (ZEYCXD)) := (YCXDZE) ∗1,I I 2 (CDE)

= YCXD+τ(X)ZE−τ(Z)YC−τ(Y )XDZE−τ(Z)YC−τ(Y )XD−τ(X)ZE (3.13c)

(II) T2(σ
0
II (ZEYCXD)) := (ZEYCXD) ∗2,I I 0 (ECD)

= ZEYC+τ(Y )XD−τ(X)ZE+τ(Z)YCXD+τ(X)ZE+τ(Z)YC−τ(Y )XD (3.14a)

T2(σ
1
II (ZEYCXD)) := (XDZEYC) ∗2,I I 1 (DEC)

= XDZE−τ(Z)YC−τ(Y )XD−τ(X)ZEYC+τ(Y )XD−τ(X)ZE+τ(Z)YC (3.14b)

T2(σ
2
II (ZEYCXD)) := (YCXDZE) ∗2,I I 2 (CDE)

= YCXD+τ(X)ZE+τ(Z)YC−τ(Y )XDZE−τ(Z)YC−τ(Y )XD−τ(X)ZE (3.14c)

(III) T3(σ
0
II (ZEYCXD)) := (ZEYCXD) ∗3,I I 0 (ECD)

= ZEYC+τ(Y )XD+τ(X)ZE+τ(Z)YCXD+τ(X)ZE+τ(Z)YC−τ(Y )XD (3.15a)

T3(σ
1
II (ZEYCXD)) := (XDZEYC) ∗3,I I 1 (DEC)

= XDZE−τ(Z)YC−τ(Y )XD−τ(X)ZEYC+τ(Y )XD−τ(X)ZE−τ(Z)YC (3.15b)

T3(σ
2
II (ZEYCXD)) := (YCXDZE) ∗3,I I 2 (CDE)

= YCXD+τ(X)ZE+τ(Z)YC−τ(Y )XDZE−τ(Z)YC−τ(Y )XD+τ(X)ZE. (3.15c)

Theorem 2 can be similarly proved from lemma 2 and admissibility conditions (3.9a–c).
In theorems 1 and 2, we have 3× 3 kinds of star transformations for each of the cyclic

ways in the period-tripling. They display the variety of types of star transformations. It
should be indicated that the TSSK sequences generated by the period-tripling transformations
in (3.10a)–(3.15c) are all star products themselves.

4. Star transformations of period-doubling

4.1. Period-doubling transformations of TSSK sequences

In symbolic dynamics of two or three letters, the method to generate period-doubling
sequences is by using the star products of an arbitrary (doubly) superstable word and a
period-2 (doubly) superstable word. However, in symbolic dynamics of four letters, this
rule is not completely valid, a new generating rule is required. From the admissibility
conditions and the forms of period-doubling, we can see that the generating rules of period-
tripling of TSSK sequences and the period-doubling are mutually connected. We have the
following theorem.

Theorem 3.Suppose that(KCKEKD) = (ZEXDYC) is an arbitrary TSSK sequence, the
period-doubling transformations generate the following TSSK sequences:

D(σ 0
I (ZEXDYC)) := ZE(XDYC) ∗2,I 0 E(ZEXD) ∗2,I 0 DYC

= ZEXD+τ(X)YC+τ(Y )ZE−τ(Z)XDYC (4.1a)

D(σ 1
I (ZEXDYC)) := YC(ZEXD) ∗2,I 1 C(YCZE) ∗2,I 1 EXD

= YCZE+τ(Z)XD−τ(X)YC+τ(Y )ZEXD (4.1b)

D(σ 2
I (ZEXDYC)) := XD(YCZE) ∗2,I 2 D(XDYC) ∗2,I 2 CZE

= XDYC−τ(Y )ZE−τ(Z)XD−τ(X)YCZE. (4.1c)
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The proof of theorem 3 depends on the admissibility conditions (3.7a–c). Using lemma 1
one can prove the theorem.

Theorem 4.Suppose that(KDKEKC) = (ZEYCXD) is an arbitrary TSSK sequence, the
period-doubling transformations generate the following TSSK sequences:

D(σ 0
II (ZEYCXD)) := ZE(YCXD) ∗2,I I 0 E(ZEYC) ∗2,I I 0 CXD

= ZEYC+τ(Y )XD−τ(X)ZE+τ(Z)YCXD (4.2a)

D(σ 1
II (ZEYCXD)) := XD(ZEYC) ∗2,I I 1 D(XDZE) ∗2,I I 1 EYC

= XDZE−τ(Z)YC−τ(Y )XD−τ(X)ZEYC (4.2b)

D(σ 2
II (ZEYCXD)) := YC(XDZE) ∗2,I I 2 C(YCXD) ∗2,I I 2 DZE

= YCXD+τ(X)ZE+τ(Z)YC−τ(Y )XDZE. (4.2c)

Proof of theorem 4 depends on the admissibility conditions (3.9a–c). Using lemma 2
one can prove the theorem.

The generating rules of period-doubling have the parity symmetry. For period-doubling
of TSSK sequences in theorems 3 and 4 we see thatSD takes the same parity, whileSE (or
SC) takes opposite parity among the expressions(4.1a) and (4.2c), (4.1b) and (4.2b), as
well as (4.1c) and (4.2a). ThusSESDSC remains unchanged in each pair of expressions.
Similarly, the preservation of parity symmetry occurs in the next paragraph. For period-
doubling of DSSK sequences in (I) of theorem 5, we also see thatSC and SD in (4.4a)
have opposite signs to those in(4.4b), so SCSD remains unchanged; while in(4.5a) and
(4.5b) of (II), SCSE remains unchanged.

4.2. Period-doubling transformations of DSSK sequences and cascades

The generating rule of period-doubling of DSSK sequences in the symbolic dynamics of
three letters is obtained on the basis of the up-star and down-star products of sequences
of critical points [21, 30] that in the symbolic dynamics of four letters can also be found
by the star transformations of sequences of critical points. One can also divide DSSK
sequences of four letters into two types of cyclic ways,(KE|KCKD) = (ZE|XDYC) and
(KD|KCKE) = (XD|ZEYC). Define two new cyclic permutation operators of two cyclic
components as

σIII =
(
Z X Y , E D C

Z Y X , E C D

)
σIV =

(
Z X Y , E D C

Y X Z , C D E

)
. (4.3)

Then we have the following generating rule of period-doubling or star transformations.

Theorem 5.Suppose that(KE|KCKD) = (ZE|XDYC) and (KD|KCKE) = (XD|ZEYC)
are arbitrary DSSK sequences, the period-doubling transformations generate the following
DSSK sequences:

(I) D(σ 0
III (ZE|XDYC)) := (ZE|XDYC) ∗1,I 0 (E|DC) = (ZE|XDYC−τ(Y )XD−τ(X)YC)

(4.4a)

D(σ 1
III (ZE|XDYC)) := (ZE|YCXD) ∗1,I 1 (E|CD) = (ZE|YCXD+τ(X)YC+τ(Y )XD)

(4.4b)

(II) D(σ 0
IV (XD|ZEYC)) := (XD|ZEYC) ∗3,I 0 (D|EC) = (XD|ZEYC+τ(Y )ZE−τ(Z)YC)

(4.5a)

D(σ 1
IV (XD|ZEYC)) := (XD|YCZE) ∗3,I 2 (D|CE) = (XD|YCZE+τ(Z)YC−τ(Y )ZE).

(4.5b)
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Admissibility conditions of (I) in theorem 5 read

BL,M(ZE) < XD BL,M(XD) < XD BL,M(YC) < XD

BM,N(ZE) > YC BM,N(XD) > YC BM,N(YC) > YC

BN,R(ZE) < ZE BN,R(XD) < ZE BN,R(YC) < ZE.

Admissibility conditions of (II) in theorem 5 are

BL,M(ZE) < ZE BL,M(XD) < ZE BL,M(YC) < ZE

BM,N(ZE) > XD BM,N(XD) > XD BM,N(YC) > XD

BN,R(ZE) < YC BN,R(XD) < YC BN,R(YC) < YC.

Theorem 5 can be easily proved by the admissibility conditions and the similar method
to prove lemma 1.

For a given DSSK sequence(KE|KCKD) = (ZE|XDYC), whereKD = YCXD and
KC = XDYC. The upper and lower sequences ofKD are SSSK sequencesYC+τ(Y )XD and
YC−τ(Y )XD. The upper sequence ofYC+τ(Y )XD is YC+τ(Y )XD−τ(X), the lower sequence
of YC−τ(Y )XD is YC−τ(Y )XD−τ(X). They form the boundaries of the window ofKD.
Thus the upper and lower boundaries of period-doubling sequenceYC−τ(Y )XD−τ(X)YCXD
of KD are YC−τ(Y )XD−τ(X)YC−τ(Y )XD−τ(X) and YC−τ(Y )XD−τ(X)YC+τ(Y )XD−τ(X).
Similarly, the upper and lower sequences ofKC are SSSK sequencesXD+τ(X)YC
and XD−τ(X)YC. The upper and lower boundaries of the window ofKC are
XD+τ(X)YC+τ(Y ) and XD−τ(X)YC+τ(Y ). The upper and lower boundaries of period-
doubling sequenceXD+τ(X)YC+τ(Y )XDYC of KC areXD+τ(X)YC+τ(Y ) XD−τ(X)YC+τ(Y )

andXD+τ(X)YC+τ(Y )XD+τ(X)YC+τ(Y ). Therefore the period-doubling bifurcations occur
at odd stringsYC−τ(Y )XD−τ(X) andXD+τ(X)YC+τ(Y ). The lower boundary ofKD attaches
to the upper one of the period-doubling sequence ofKD. The upper boundary ofKC
attaches to the lower one of the period-doubling sequence ofKC . The lower boundary of
KC attaches to the upper one ofKD.

For a given DSSK sequence(KD|KCKE) = (XD|ZEYC), whereKC = ZEYC

and KE = YCZE. The upper and lower boundaries of the window ofKC are
ZE+τ(Z)YC−τ(Y ) and ZE−τ(Z)YC−τ(Y ). The upper and lower boundaries of period-
doubling sequenceZE+τ(Z)YC−τ(Y )ZEYC of KC are ZE+τ(Z)YC−τ(Y )ZE−τ(Z)YC−τ(Y )

and ZE+τ(Z)YC−τ(Y )ZE+τ(Z)YC−τ(Y ). Similarly, the upper and lower boundaries
of the window of KE are YC+τ(Y )ZE−τ(Z) and YC−τ(Y )ZE−τ(Z). The upper and
lower boundaries of period-doubling sequenceYC+τ(Y )ZE−τ(Z)YCZE of KE are
YC+τ(Y )ZE−τ(Z)YC−τ(Y )ZE−τ(Z) and YC+τ(Y )ZE−τ(Z)YC+τ(Y )ZE−τ(Z). Therefore the
period-doubling bifurcations occur at odd stringsZE+τ(Z)YC−τ(Y ) and YC+τ(Y )ZE−τ(Z).
The lower boundaries ofKC andKE connects with each other, and their upper boundaries
attach to the lower boundaries of their period-doubling sequences, respectively. Thus the
Feigenbaum period-doubling bifurcation will form a sequences of cascades.

From the generating rule of DSSK sequences, we can easily write the sequences of
period-doubling cascade

D
∗1,I0n(E|DC) D

∗1,I1n(E|CD)
D
∗3,I0n(D|EC) D

∗3,I2n(D|CE).
For example, the beginnings of the sequences(n = 1, 2, 3, 4 . . .) are

D
∗1,I0n(E|DC) = (E|DC), (E|DLMC), (E|DLMMMLMC),

(E|DLMMMLMLMLMMMLMC), . . . ,
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D
∗1,I1n(E|CD) = (E|CD), (E|NMDC), (E|NMMMNMDC),

(E|NMMMNMNMNMMMNMDC), . . . ,
D
∗3,I0n(D|EC) = (D|EC), (D|EMNC), (D|EMNLNMNC),

(D|EMNLNMNMNMNLNMNC), . . . ,
D
∗3,I2n(D|CE) = (D|CE), (D|RLEC), (D|RLNLRLEC),

(D|RLNLRLRLRLNLRLEC), . . . .

Of course the sequences of zero topological entropy can be verified by the Milnor–Thusrston
characteristic polynomial [31, 32]. Taking the limit ofn → ∞, the boundary of zero
topological entropy (i.e. boundary of topological chaos [22]) can be obtained. The boundary
will be the complex fractal curved surface in the three-dimensional kneading space of
parameters. In addition, we can also see other quite complex fractal objects when taking
the limit of power of the various star transformations for the period-tripling, as in the
known symbolic dynamics [28, 33, 34]. Now, turning to the phase space to discuss the
above example, we can obtain the regular fractal object with a constant fractal dimension,
because the power sequence of the star transformations is taken from only one of four
kinds of transformations(D∗1,I0n1, D

∗1,I1n2, D
∗3,I0n3 andD

∗3,I2n4) namely, the transformations
are pure. If the transformations are mixed, then taking from one pair of four kinds of
transformations(D∗1,I0n1, D

∗1,I1n2) or (D∗3,I0n3, D
∗3,I2n4) respectively; the limit of the power

sequence may be an irregular multifractal object. Moreover, if the power sequencen1, n2,
(or n3, n4) ({n1, n2, n3, n4} ∈ Z+) is taken as a pseudorandom or random sequence and the
limit exists according to the probability convergence, then an interesting phenomenon will
occur in the Feigenbaum’s scenario, namely, a new Feigenbaum period-doubling bifurcation
will possess the topological universality, because the symbolic sequence will preserve the
topological universality in the sense of a monotone equivalence class of maps. But the
metric universality will no longer be preserved, because the power of symbolic sequence is
pseudorandom or random. This leads to the disappearance of the universal scaling factor
and convergent rate [29]. The details of this interesting phenomenon will be discussed
elsewhere.

In the theorems 3 and 4, we have three kinds of star transformations for each of the
cyclic ways in the period-doubling for TSSK sequences, which may be determined by the
number of parameters of the maps. In theorem 5 we have two kinds of transformations for
DSSK sequences. They display a variety of genealogy of star transformations.

5. The method to generate SSSK sequences from TSSK sequences by star
transformations

An important method in symbolic dynamics of four letters to produce all the finite SSSK
sequences from TSSK sequences is similar to that of the symbolic dynamics of three
letters [26]. The star transformations can play a role. Since there exist three types of
star transformations, according to the admissibility conditions, for a given TSSK sequence,
SSSK sequences can be generated by the following theorem.

Theorem 6.Suppose that(KCKEKD) = (ZEXDYC) is an arbitrary TSSK sequence, then
four different types of SSSK sequences(KC |KD|KE) = (YC|XD|ZE) can be generated as
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follows:

(I)


KC = (σ 0

I (ZEXDYC)) ∗2,I 1 C = ZE+τ(Z)XD−τ(X)YC
KD = (σ 1

I (ZEXDYC)) ∗1,I 2 D = YC−τ(Y )ZE+τ(Z)XD
KE = (σ 2

I (ZEXDYC)) ∗2,I 0 E = XD+τ(X)YC+τ(Y )ZE
(5.1)

(II)


KC = (σ 0

I (ZEXDYC)) ∗2,I 1 C = ZE+τ(Z)XD−τ(X)YC
KD = (σ 1

I (ZEXDYC)) ∗2,I 2 D = YC−τ(Y )ZE−τ(Z)XD
KE = (σ 2

I (ZEXDYC)) ∗1,I 0 E = XD+τ(X)YC−τ(Y )ZE
(5.2)

(III)


KC = (σ 0

I (ZEXDYC)) ∗2,I 1 C = ZE+τ(Z)XD−τ(X)YC
KD = (σ 1

I (ZEXDYC)) ∗2,I 2 D = YC−τ(Y )ZE−τ(Z)XD
KE = (σ 2

I (ZEXDYC)) ∗2,I 0 E = XD+τ(X)YC+τ(Y )ZE
(5.3)

(IV)


KC = (σ 0

I (ZEXDYC)) ∗1,I 1 C = ZE+τ(Z)XD+τ(X)YC
KD = (σ 1

I (ZEXDYC)) ∗2,I 2 D = YC−τ(Y )ZE−τ(Z)XD
KE = (σ 2

I (ZEXDYC)) ∗2,I 0 E = XD+τ(X)YC+τ(Y )ZE.
(5.4)

The proof of theorem 6 can be completed by the admissibility conditions and lemma 1.

Theorem 7.Suppose that(KDKEKC) = (ZEYCXD) is an arbitrary TSSK sequence, then
four types of SSSK sequences(KD|KC |KE) = (XD|YC|ZE) can be generated as follows:

(I)


KD = (σ 0

II (ZEYCXD)) ∗1,I I 1 D = ZE−τ(Z)YC+τ(Y )XD
KC = (σ 1

II (ZEYCXD)) ∗2,I I 2 C = XD+τ(X)ZE+τ(Z)YC
KE = (σ 2

II (ZEYCXD)) ∗2,I I 0 E = YC+τ(Y )XD−τ(X)ZE
(5.5)

(II)


KD = (σ 0

II (ZEYCXD)) ∗2,I I 1 D = ZE−τ(Z)YC−τ(Y )XD
KC = (σ 1

II (ZEYCXD)) ∗1,I I 2 C = XD+τ(X)ZE−τ(Z)YC
KE = (σ 2

II (ZEYCXD)) ∗2,I I 0 E = YC+τ(Y )XD−τ(X)ZE
(5.6)

(III)


KD = (σ 0

II (ZEYCXD)) ∗2,I I 1 D = ZE−τ(Z)YC−τ(Y )XD
KC = (σ 1

II (ZEYCXD)) ∗2,I I 2 C = XD+τ(X)ZE+τ(Z)YC
KE = (σ 2

II (ZEYCXD)) ∗2,I I 0 E = YC+τ(Y )XD−τ(X)ZE
(5.7)

(IV)


KD = (σ 0

II (ZEYCXD)) ∗2,I I 1 D = ZE−τ(Z)YC−τ(Y )XD
KC = (σ 1

II (ZEYCXD)) ∗2,I I 2 C = XD+τ(X)ZE+τ(Z)YC
KE = (σ 2

II (ZEYCXD)) ∗3,I I 0 E = YC+τ(Y )XD+τ(X)ZE.
(5.8)

The proof of theorem 7 can be completed by the admissibility conditions and lemma 2.
In theorems 6 and 7, we have four kinds of star transformations to generate SSSK

sequences for each of the cyclic ways from TSSK sequences. This enhances the variety of
genealogy of star transformations.

The three SSSK sequences in each of the above eight types are compatible. Further,
due to the continuity one can obtain the nonsuperstable kneading sequences with star
transformations again, therefore the upper and lower sequences of periodic window of SSSK
sequences are obtained. For instance, from TSSK sequence(KCKEKD) = (ZEXDYC),
the SSSK sequences generated and their non-superstable kneading sequences are as follows:

(ZEXDYC)

{ ∗2,I 1C = ZE+τ(Z)XD−τ(X)YC
∗2,I 0C = ZE−τ(Z)XD−τ(X)YC
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Figure 3. A sketch of three kinds of period-doubling and their cascade for the TSSK sequence
ZEXDYC. The small circles represent projections of the joint of sequenceZEXDYC to the
three kneading coordinate planes. The black circles represent projections of the joints of three
period-doubling TSSK sequences ofZEXDYC to the three kneading coordinate planes.

ZE+τ(Z)XD−τ(X)YC

{
∗1,I 1E = ZE+τ(Z)XD−τ(X)YC+τ(Y )
∗1,I 0E = ZE+τ(Z)XD−τ(X)YC−τ(Y )

ZE−τ(Z)XD−τ(X)YC

{
∗1,I 0E = ZE−τ(Z)XD−τ(X)YC−τ(Y )
∗1,I 1E = ZE−τ(Z)XD−τ(X)YC+τ(Y )

(YCZEXD)

{ ∗2,I 2D = YC−τ(Y )ZE−τ(Z)XD
∗2,I 1D = YC+τ(Y )ZE−τ(Z)XD

YC−τ(Y )ZE−τ(Z)XD

{
∗1,I 2C = YC−τ(Y )ZE−τ(Z)XD−τ(X)
∗1,I 1C = YC−τ(Y )ZE−τ(Z)XD+τ(X)
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YC+τ(Y )ZE−τ(Z)XD

{
∗1,I 1C = YC+τ(Y )ZE−τ(Z)XD+τ(X)
∗1,I 2C = YC+τ(Y )ZE−τ(Z)XD−τ(X)

(XDYCZE)

{
∗2,I 0E = XD+τ(X)YC+τ(Y )ZE
∗2,I 2E = XD−τ(X)YC+τ(Y )ZE

XD+τ(X)YC+τ(Y )ZE

{
∗1,I 0D = XD+τ(X)YC+τ(Y )ZE−τ(Z)
∗1,I 2D = XD+τ(X)YC+τ(Y )ZE+τ(Z)

XD−τ(X)YC+τ(Y )ZE

{
∗1,I 2D = XD−τ(X)YC+τ(Y )ZE+τ(Z)
∗1,I 0D = XD−τ(X)YC+τ(Y )ZE−τ(Z).

Similarly, we can produce a series of superstable and non-superstable kneading
sequences from star transformations for the period-doubling sequences of TSSK sequences
and obtain the upper and lower sequences of the windows of the period-doubling
sequences. The upper boundaries of windows of the basic periodic sequencesKC =
ZEXDYC and KE = XDYCZE attach with the lower boundaries of windows of
their period-doubling sequencesK

′
C = ZE+τ(Z)XD−τ(X)YC+τ(Y )ZEXDYC and K

′
E =

XD+τ(X)YC+τ(Y )ZE−τ(Z) XDYCZE. While the lower boundary of the window of the
basic periodic sequenceKD = YCZEXD attaches to the upper boundary of the window of
its period-doubling sequenceK

′
D = YC−τ(Y )ZE−τ(Z)XD−τ(X)YCZEXD. Thus the cascade

occurs. The period-doubling bifurcations occur at the non-superstable kneading sequences
ZE+τ(Z)XD−τ(X)YC+τ(Y ), XD+τ(X)YC+τ(Y )ZE−τ(Z) and YC−τ(Y )ZE−τ(Z)XD−τ(X) that
are all odd strings. The relation of the period-doubling cascade is shown in figure 3.

In the symbolic dynamics of four letters, the varieties of star transformations of period-
tripling and period-doubling of TSSK sequences are obtained. They may help to find the
general rule of star products of four letters. However, what we present here is only a clue to
solving the problem. We predict that the complete star products in the symbolic dynamics
of four letters would be much more complicated than that of the symbolic dynamics of three
letters, because of the exponential growth of the kinds of star transformations.
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Appendix. The detailed proof of (I) in lemma 1

We first introduce a term,common leading string, that will be used frequently in the proof.
For two arbitrary wordsA, B and|A| > |B|, we seek their maximal common part, namely,
their intersectionH , when the first letters of two words are aligned from the head. IfH is
not empty it is called the common leading string. IfH = B, B is called theleading string
of A.

AssumingG1 ∈ BL,M(ZE
+τ(Z)) in (3.4), from (3.7a), if G1 is not the leading string
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of ZE, then (3.4) holds. OtherwiseG1 is odd, denotingZE+τ(Z) = G1Q1, (3.4) reduces to

XD±τ(X)YC±τ(Y )ZE > Q1XD
−τ(X)YC+τ(Y ) (A.1)

whereQ1 ∈ BN,R(ZE
+τ(Z)). Because bothQ1 andXD+τ(Z) are even, from(3.7c) we

have thatQ1 is not the leading string ofXD, andXD+τ(Z) not the leading string ofQ1,
so (A.1) holds. IfXD−τ(Z) is not the leading string ofQ1, (A.1) also holds. IfXD−τ(Z) is
the leading string ofQ1, denotingQ1 = XD−τ(Z)Q′1, (A.1) reduces to

YC±τ(Y )ZE < Q
′
1XD

−τ(X)YC+τ(Y ) (A.2)

whereQ
′
1 ∈ BM,N(ZE

+τ(Z)). BecauseQ
′
1 is odd andYC−τ(Y ) even, from(3.7b) we have

thatQ
′
1 is not the leading string ofYC, andYC−τ(Y ) is not the leading string ofQ

′
1, so

(A.2) is valid. If YC+τ(Y ) is not the leading string ofQ
′
1, (A.2) also holds. IfYC+τ(Y ) is

the leading string ofQ
′
1, denotingQ

′
1 = YC+τ(Y )Q

′′
1, (A.2) reduces to

ZE > Q
′′
1XD

−τ(X)YC+τ(Y ) (A.3)

whereQ
′′
1 ∈ BL,M(ZE

+τ(Z)). BecauseQ
′′
1 is even, from(3.7a) we have thatQ

′′
1 is not the

leading string ofZE, so (A.3) is valid.
AssumingS1 ∈ BL,M(XD

±τ(X)) in (3.4). From(3.7a) we have thatZE+τ(Z) is not the
leading string ofS1. If S1 is not the leading string ofZE, then (3.4) holds. OtherwiseS1

is even, denotingZE+τ(Z) = S1T1, and (3.4) reduces to

YC±τ(Y )ZE < T1XD
−τ(X)YC+τ(Y ) (A.4)

whereT1 ∈ BM,N(ZE
+τ(Z)). BecauseT1 is odd andYC−τ(Y ) even, from(3.7b) we have

thatT1 is not the leading string ofYC andYC−τ(Y ) is not the leading string ofT1, so (A.4)
holds. IfYC+τ(Y ) is not the leading string ofT1, (A.4) also holds. IfYC+τ(Y ) is the leading
string of T1, denotingT1 = YC+τ(Y )T ′1, (A.4) reduces to

ZE > T
′

1XD
−τ(X)YC+τ(Y ) (A.5)

whereT
′

1 ∈ BL,M(ZE
+τ(Z)). BecauseT

′
1 is even, from(3.7a) we have thatT

′
1 is not the

leading string ofZE and (A.5) is valid.
AssumingU1 ∈ BL,M(YC

±τ(Y )) in (3.4), we have from(3.7a) thatZE+τ(Z) is not the
leading string ofU1. If U1 is not the leading string ofZE then (3.4) holds. OtherwiseU1

is odd, denotingZE+τ(Z) = U1V1 and (3.4) reduces to

ZE > V1XD
−τ(X)YC+τ(Y ) (A.6)

whereV1 ∈ BL,M(ZE
+τ(Z)). BecauseV1 is even, from(3.7a) we have thatV1 is not the

leading string ofZE, (A.6) is valid.
The proof of(3.4) is completed.
AssumingG2 ∈ BL,M(YC

−τ(Y )) in (3.5a), we have from(3.7a) thatZE+τ(Z) is not the
leading string ofG2. If G2 is not the leading string ofZE, then(3.5a) holds. Otherwise
G2 is odd, denotingZE+τ(Z) = G2Q2, (3.5a) reduces to

ZE+τ(Z)XD±τ(X)YC > Q2XD
−τ(X)YC+τ(Y ) (A.7)

whereQ2 ∈ BL,M(ZE
+τ(Z)). BecauseQ2 is even, from(3.7a) we have thatQ2 is not the

leading string ofZE and (A.7) is valid.
AssumingS2 ∈ BL,M(ZE

+τ(Z)) in (3.5a). From (3.7a), if S2 is not the leading string
of ZE, then (3.5a) holds. OtherwiseS2 is odd, denotingZE+τ(Z) = S2T2 and (3.5a)
reduces to

XD±τ(X)YC > T2XD
−τ(X)YC+τ(Y ) (A.8)
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whereT2 ∈ BN,R(ZE
+τ(Z)). BecauseT2 andXD+τ(X) are even, from(3.7c) we have that

T2 is not the leading string ofXD andXD+τ(X) is not the leading string ofT2, so (A.8)
is valid. If XD−τ(X) is not the leading string ofT2, (A.8) also holds. IfXD−τ(X) is the
leading string ofT2, denotingT2 = XD−τ(X)T ′2, (A.8) reduces to

YC < T
′

2XD
−τ(X)YC+τ(Y ) (A.9)

whereT
′

2 ∈ BM,N(ZE
+τ(Z)). BecauseT

′
2 is odd, we have from(3.7b) that T

′
2 is not the

leading string ofYC and (A.9) is valid.
AssumingU2 ∈ BL,M(XD

±τ(X)) in (3.5a) we have from(3.7a) that ZE+τ(Z) is not
the leading string ofU2. If U2 is not the leading string ofZE then(3.5a) holds. Otherwise
U2 is even, denotingZE+τ(Z) = U2V2 and(3.5a) reduces to

YC < V2XD
−τ(X)YC+τ(Y ) (A.10)

whereV2 ∈ BM,N(ZE
+τ(Z)). BecauseV2 is odd, we have from(3.7b) that V2 is not the

leading string ofYC and (A.10) is valid.
The proof of(3.5a) is completed.
AssumingG3 ∈ BL,M(YC

−τ(Y )) in (3.5b), from (3.7a), if G3 is not the leading string
of ZE, then (3.5b) holds. OtherwiseG3 is odd, denotingZE = G3Q3E, (3.5b) reduces
to

ZE−τ(Z)XD±τ(X)YC > Q3E (A.11)

whereQ3E ∈ BL,M(ZE). From (3.7a) we have (A.11).
AssumingS3 ∈ BL,M(ZE

−τ(Z)) in (3.5b), from (3.7a), if S3 is not the leading string
of ZE, then(3.5b) holds. OtherwiseS3 is odd. DenotingZE = S3T3E, (3.5b) reduces to

XD±τ(X)YC > T3E (A.12)

whereT3E ∈ BN,R(ZE). From (3.7c) we have thatXD+τ(X) is not the leading string of
T3E. If XD−τ(X) is not the leading string ofT3E, then (A.12) is valid. Otherwise, denoting
T3E = XD−τ(X)T ′3E, (A.12) reduces to

YC < T
′

3E (A.13)

whereT
′

3E ∈ BM,N(ZE). From (3.7b) we have (A.13).
AssumingU3 ∈ BL,M(XD

±τ(X)) in (3.5b), from (3.7a), if U3 is not the leading string
of ZE, then(3.5b) holds. OtherwiseU3 is even, denotingZE = U3V3E, (3.5b) reduces to

YC < V3E (A.14)

whereV3E ∈ BM,N(ZE). From (3.7b) we have (A.14).
The proof of(3.5b) is completed.
AssumingG4 ∈ BL,M(XD

+τ(X)) in (3.6a), from (3.7a), if G4 is not the leading string
of ZE, then (3.6a) holds. OtherwiseG4 is even. DenotingZE+τ(Z) = G4Q4, (3.6a)
reduces to

YC±τ(Y )ZE+τ(Z)XD < Q4XD
−τ(X)YC+τ(Y ) (A.15)

whereQ4 ∈ BM,N(ZE
+τ(Z)). BecauseQ4 is odd andYC−τ(Y ) even, from(3.7b) we have

thatQ4 is not the leading string ofYC and YC−τ(Y ) is not the leading string ofQ4, so
(A.15) is valid. If YC+τ(Y ) is not the leading string ofQ4, (A.15) also holds. IfYC+τ(Y )

is the leading string ofQ4, denotingQ4 = YC+τ(Y )Q′4, (A.15) reduces to

ZE+τ(Z)XD > Q
′
4XD

−τ(X)YC+τ(Y ) (A.16)

whereQ
′
4 ∈ BL,M(ZE

+τ(Z)). BecauseQ
′
4 is even, we have from(3.7a) thatQ

′
4 is not the

leading string ofZE and (A.16) is valid.
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AssumingS4 ∈ BL,M(YC
±τ(Y )) in (3.6a), from (3.7a), if S4 is not the leading string

of ZE, then(3.6a) holds. OtherwiseS4 is odd. DenotingZE+τ(Z) = S4T4, (3.6a) reduces
to

ZE+τ(Z)XD > T4XD
−τ(X)YC+τ(Y ) (A.17)

whereT4 ∈ BL,M(ZE
+τ(Z)). BecauseT4 is even, from(3.7a) we have thatT4 is not the

leading string ofZE and (A.17) is valid.
AssumingU4 ∈ BL,M(ZE

+τ(Z)) in (3.6a), from (3.7a), if U4 is not the leading string
of ZE, then(3.6a) holds. OtherwiseU4 is odd. DenotingZE+τ(Z) = U4V4, (3.6a) reduces
to

XD > V4XD
−τ(X)YC+τ(Y ) (A.18)

whereV4 ∈ BN,R(ZE
+τ(Z)). BecauseV4 is even, from(3.7c) we have thatV4 is not the

leading string ofXD and (A.18) is valid.
The proof of(3.6a) is completed.
AssumingG5 ∈ BL,M(XD

+τ(X)) in (3.6b), from (3.7a), if G5 is not the leading string
of ZE, then(3.6b) holds. OtherwiseG5 is even. DenotingZE = G5Q5E, (3.6b) reduces
to

YC±τ(Y )ZE−τ(Z)XD < Q5E (A.19)

whereQ5E ∈ BM,N(ZE). From (3.7b) we have thatYC−τ(Y ) is not the leading string of
Q5E. If YC+τ(Y ) is not the leading string ofQ5E, then (A.19) holds. IfYC+τ(Y ) is the
leading string ofQ5E, denotingQ5E = YC+τ(Y )Q′5E, (A.19) reduces to

ZE−τ(Z)XD > Q
′
5E (A.20)

whereQ
′
5E ∈ BL,M(ZE). (A.20) is valid from(3.7a).

AssumingS5 ∈ BL,M(YC
±τ(Y )) in (3.6b), from (3.7a), if S5 is not the leading string

of ZE, then(3.6b) holds. OtherwiseS5 is odd. DenotingZE = S5T5E, (3.6b) reduces to

ZE−τ(Z)XD > T5E (A.21)

whereT5E ∈ BL,M(ZE). (A.21) holds from(3.7a).
AssumingU5 ∈ BL,M(ZE

−τ(Z)) in (3.6b), from (3.7a), if U5 is not the leading string
of ZE, then(3.6b) holds. OtherwiseU5 is odd. DenotingZE = U5V5E, (3.6b) reduces to

XD > V5E (A.22)

whereV5E ∈ BN,R(ZE). (A.22) holds from(3.7c).
The proof of(3.6b) is completed.
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